#+Title: LARCS #+Subtitle: The "Lisp Automated Rewrite and Calculation System" #+AUTHOR: Samuel W. Flint #+EMAIL: swflint@flintfam.org #+DATE: \today #+INFOJS_OPT: view:info toc:nil path:http://flintfam.org/org-info.js #+OPTIONS: toc:nil H:5 ':t *:t todo:nil stat:nil d:nil #+PROPERTY: noweb no-export #+PROPERTY: comments noweb #+LATEX_HEADER: \usepackage[margins=0.75in]{geometry} #+LATEX_HEADER: \parskip=5pt #+LATEX_HEADER: \parindent=0pt #+LATEX_HEADER: \lstset{texcl=true,breaklines=true,columns=fullflexible,basicstyle=\ttfamily,frame=lines,literate={<=}{$\leq$}1 {>=}{$\geq$}1} #+LATEX_CLASS_OPTIONS: [10pt,twoside] #+LATEX_HEADER: \pagestyle{headings} * Export :noexport: :PROPERTIES: :CREATED: <2016-06-09 Thu 12:49> :END: #+Caption: Export Document #+Name: export-document #+BEGIN_SRC emacs-lisp :exports none :results none (save-buffer) (let ((org-confirm-babel-evaluate (lambda (lang body) (declare (ignorable lang body)) nil))) (org-latex-export-to-pdf)) #+END_SRC * Tangle :noexport: :PROPERTIES: :CREATED: <2016-06-09 Thu 12:50> :END: #+Caption: Tangle Document #+Name: tangle-document #+BEGIN_SRC emacs-lisp :exports none :results none (save-buffer) (let ((python-indent-offset 4)) (org-babel-tangle)) #+END_SRC * WORKING Introduction :nonum: :PROPERTIES: :CREATED: <2016-06-09 Thu 09:19> :END: It's a bold move to do what this does, building a Computer Algebra System from scratch, but I'm doing it anyway. I've chosen to do this because I wanted to understand how most CASs work, and that can be accomplished by either reading thhe source code for one, or by building one. While there are several very good CASs, the majority of them are non-free, and thus I'm not able to learn how exactly they work. Those that are free software are either not complete, or are too complex to be able to learn from easily. This is my Computer Algebra System, and it contains the following components: - [[id:b2c1fd45-b631-48f9-a093-66e1a0faa77f][Algebraic Manipulation]] - [[id:360bc5f4-39ac-4161-9326-00c3daaf368c][Derivation]] - [[id:ed9f4311-bf9f-42df-8f46-254658b93c10][Lisp Equation Conversion to LaTeX]] * DONE What's in a name? :nonum: CLOSED: [2016-06-09 Thu 12:48] :PROPERTIES: :CREATED: <2016-06-09 Thu 12:37> :END: The CAS contained in this is called LARCS, or the Lisp Automated Rewrite and Calculation System. This describes the system as follows: - Lisp :: The CAS is written in Lisp. This is not novel, as other CAS have been written in Lisp before (Macsyma/Maxima), but it is unusual in that most new ones have been written in other languages. - Automated :: The CAS will perform rewrites and calculations automatically. - Rewrite :: The system is built on the concept of a rewrite system. This workse because to perform many actions in the algebra, you rewrite an equation in one way or another. - Calculation :: The ability to go from a symbolic equation, something like $3x^3 + x^2 + 10x - 3$ (~(+ (* 3 (expt x 3)) (expt x 2) (* 10 x) -3)~), to the result where $x \gets 4$ (245). - System :: A complete library and application for symbolic algebra. * TOC :ignore: :PROPERTIES: :CREATED: <2016-06-09 Thu 09:19> :END: #+TOC: headlines 3 #+TOC: listings * WORKING Common Functionality [0/4] :PROPERTIES: :CREATED: <2016-06-11 Sat 22:23> :END: ** TODO Match Expression Generation :PROPERTIES: :CREATED: <2016-06-13 Mon 17:18> :ID: f7876b1d-3b67-48c1-863a-85e1b3026ed6 :END: To be able to apply an expansion, you need to determine eligibility. To do this, you need an expression that matches on two things, function name and arity. To generate this, it takes an operation name and the arity. Based on the arity type ($=$, $>$, $\leq$), it will construct a simple boolean statement in the format of $(function = operator) \land (argument-count == arity)$, where $==$ is one of the above arity types. #+Caption: Match Expression Generation #+Name: common-match-expression-generation #+BEGIN_SRC lisp (defun generate-match-expression (on arity &optional (type '=) (function-var 'function) (arg-count-var 'arg-count)) (check-type on symbol) (check-type type (member = > >=)) (check-type arity (integer 0)) (case type (= `(and (eq ,function-var ',on) (= ,arg-count-var ,arity))) (> `(and (eq ,function-var ',on) (> ,arg-count-var ,arity))) (>= `(and (eq ,function-var ',on) (>= ,arg-count-var ,arity))))) #+END_SRC ** TODO Generate an Args List :PROPERTIES: :CREATED: <2016-06-13 Mon 17:19> :ID: 49596957-2fc6-4458-ad85-99cbcf337b42 :END: #+Caption: Generate an Args List #+Name: common-generate-an-args-list #+BEGIN_SRC lisp (defun gen-args-list (count) (let ((letters '(a b c d e f g h i j k l m n o p q r s t u v w x y z))) (let ((variables-list '())) (dotimes (i count) (pushnew (symbolicate 'expression- (nth i letters)) variables-list)) (reverse variables-list)))) #+END_SRC ** TODO Constants and Greeks :PROPERTIES: :CREATED: <2016-06-13 Mon 20:57> :ID: 907fcf64-51eb-4a2c-a8bc-29e4f75f1dd3 :END: #+Caption: Constants and Greeks #+Name: constants-and-greeks #+BEGIN_SRC lisp (defvar *special-symbols-to-sequences* '((alpha . "\\alpha") (beta . "\\beta") (gamma . "\\gamma") (delta . "\\delta") (epsilon . "\\epsilon") (varepsilon . "\\varepsilon") (zeta . "\\zeta") (eta . "\\eta") (theta . "\\theta") (vartheta . "\\vartheta") (gamma . "\\gamma") (kappa . "\\kappa") (lambda . "\\lambda") (mu . "\\mu") (nu . "\\nu") (xi . "\\xi") (omicron . "\\o") (pi . "\\pi") (varpi . "\\varpi") (rho . "\\rho") (varrho . "\\varrho") (sigma . "\\sigma") (varsigm . "\\varsigm") (tau . "\\tau") (upsilon . "\\upsilon") (phi . "\\phi") (varphi . "\\varphi") (chi . "\\chi") (psi . "\\psi") (omega . "\\omega") (big-gamma . "\\Gamma") (big-delta . "\\Delta") (big-theta . "\\Theta") (big-lambda . "\\Lambda") (big-xi . "\\Xi") (big-pi . "\\Pi") (big-sigma . "\\Sigma") (big-upsilon . "\\Upsilon") (big-phi . "\\Phi") (big-psi . "\\Psi") (big-omega . "\\Omega"))) (defvar *constant-names* (mapcar #'car *special-symbols-to-sequences*)) (mapcar #'export *constant-names*) #+END_SRC ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-13 Mon 17:20> :ID: d583d5e4-a2c9-432c-9486-cc6baa4239f4 :END: #+Caption: Assemble Common Functions #+Name: assemble-common-functions #+BEGIN_SRC lisp :tangle "larcs-common.lisp" (in-package #:larcs.common) <> <> <> #+END_SRC * WORKING Expression Typing [0/8] :PROPERTIES: :CREATED: <2016-04-30 Sat 23:15> :ID: c6921b1e-d269-4243-acff-5a77685c331e :END: To accomplish the goal of providing a complete system to manipulate algebraic expressions, a way to determine the type of expression is important. This will allow for a form of "generic programming" to be used in the development of the manipulator functions, as a way to ensure that the correct manipulator is chosen. This includes a form of storage, the classification definition macro, a way to check a classification, an expression classifier, and all possible classifications. ** TODO Define Classification :PROPERTIES: :CREATED: <2016-05-02 Mon 13:56> :ID: d8826a51-50b8-467a-9e52-158502bd4138 :END: This is the classification definition macro, ~define-classification~. It takes one symbol argument, ~name~ (the name of the classification), and a body, which is encapsulated within a defun, and binds the following variables: - ~expression~ :: the expression which is to be classified - ~length~ :: the length of the expression if the expression is a list, or 0 if it is not. Aside from defining the classification, it also pushes the classification name and the classifier onto the stack, which can be used for direct classification checking or to completely classify an expression. #+Caption: Define Classification #+Name: et-define-classification #+BEGIN_SRC lisp (defmacro define-classification (name &body body) (check-type name symbol) (let ((classifier-name (symbolicate name '-classifier))) `(progn (defun ,classifier-name (expression &aux (length (if (listp expression) (length expression) 0))) (declare (ignorable length)) ,@body) (pushnew '(,name . ,classifier-name) *classifications*) (export ',name) ',name))) #+END_SRC ** TODO Check Classification :PROPERTIES: :CREATED: <2016-05-02 Mon 13:56> :ID: 6505b0b1-ffd8-4dd6-b81a-3e49483d8437 :END: To check a classification, the classifier is obtained, unless the specified classifier is ~*~, in which case, ~t~ is always returned. If the classification is not, the classifier function is called on the expression, the result of which is returned. #+Caption: Check Classification #+Name: et-check-classification #+BEGIN_SRC lisp (defun classified-as-p (expression classification) (if (eq '* classification) t (funcall (cdr (assoc classification *classifications*)) expression))) #+END_SRC ** TODO Classify Expression :PROPERTIES: :CREATED: <2016-05-02 Mon 14:09> :ID: 82d75d54-1d33-400b-86a3-7d16af938ac8 :END: To completely classify an expression, the ~*classifications*~ alist is mapped over, checking to see if each classification is applicable to the expression, if so, the name being returned, otherwise ~nil~. All nils are removed, leaving the complete classification, which is returned for use. #+Caption: Classify Expression #+Name: et-classify-expression #+BEGIN_SRC lisp (defun classify (expression) (let ((classifications '())) (dolist (possible ,*classifications* (reverse classifications)) (let ((name (car possible)) (checker (cdr possible))) (when (funcall checker expression) (push name classifications)))))) #+END_SRC ** TODO Classification Case :PROPERTIES: :CREATED: <2016-05-20 Fri 14:15> :ID: 19a4e467-baa0-47eb-9267-93ff3801b1fd :END: Following the case pattern, and to allow for cleaner code, I've defined the classification case macro. It does this by taking a variable name and a list of cases. These are then mapped over, producing clauses suitable for a ~cond~ expression, to which this macro finally expands, binding the complete classification of the given expression to ~the-classification~. #+Caption: Classification Case #+Name: et-classification-case #+BEGIN_SRC lisp (defmacro classification-case (var &rest cases) (let ((conditions (map 'list #'(lambda (case) (destructuring-bind (type &body body) case (if (eq type 't) `((classified-as-p ,var '*) ,@body) `((classified-as-p ,var ',type) ,@body)))) cases))) `(let ((the-classification (classify ,var))) (declare (ignorable the-classification)) (cond ,@conditions)))) #+END_SRC ** TODO When Classified :PROPERTIES: :CREATED: <2016-05-30 Mon 18:31> :ID: 5c7c3e0b-9170-48e9-a414-6ac4528f9ac3 :END: The ~when-classified-as~ macro takes a classification, variable and a body. It expands to a ~when~ form, with the classification and variable put into a ~classified-as-p~ call becoming the predicate, determining whether or not the body is run. #+Caption: When Classified #+Name: et-when-classified #+BEGIN_SRC lisp (defmacro when-classified-as (classification variable &body body) `(when (classified-as-p ,variable ',classification) ,@body)) #+END_SRC ** WORKING Classifications [0/13] :PROPERTIES: :CREATED: <2016-05-02 Mon 13:56> :ID: dcce4a6b-1b2d-4638-a82b-0c4917b0698a :END: I must define several different classifications, ranging from simple numeric expressions (numbers) to trigonometric expressions ($\sin$, $\cos$ and the lot). They are as follows: - Numbers - Variables - Non-Atomics - Additives - Subtractives - Powers - Exponentials - Multiplicatives - Logarithmics - Rationals - Polynomial Terms - Polynomials - Trigonometrics #+Caption: Possible Classifications #+Name: et-possible-classifications #+BEGIN_SRC lisp <> <> <> <> <> <> <> <> <> <> <> <> <> #+END_SRC *** TODO Numbers :PROPERTIES: :CREATED: <2016-05-02 Mon 14:26> :ID: 42081153-7cc5-42ff-a17f-53e171c6d1a7 :END: Check to see if a given expression is a number using ~numberp~. #+Caption: Classify Numbers #+Name: et-classify-numbers #+BEGIN_SRC lisp (define-classification numeric (numberp expression)) #+END_SRC *** TODO Variables :PROPERTIES: :CREATED: <2016-05-02 Mon 14:26> :ID: 4c676754-ef9a-485f-91a2-8f1bd83c7659 :END: Check to see if a given expression is a variable, that is to say a symbol, using ~symbolp~. #+Caption: Classify Variables #+Name: et-classify-variables #+BEGIN_SRC lisp (define-classification variable (symbolp expression)) #+END_SRC *** TODO Non Atomics :PROPERTIES: :CREATED: <2016-05-04 Wed 19:52> :ID: 414df063-0be1-4849-8b9f-d71aa828be2a :END: Check to see if a given expression is a non-atomic (any expression other than a number or a variable) using ~listp~. #+Caption: Classify Non-Atomics #+Name: et-classify-non-atomics #+BEGIN_SRC lisp (define-classification non-atomic (listp expression)) #+END_SRC *** TODO Additives :PROPERTIES: :CREATED: <2016-05-02 Mon 14:26> :ID: 736d79dc-f34c-4247-b592-690d7f2fddd9 :END: Check to see whether or not an expression is an additive by ensuring that it is non-atomic and the first element is the symbol ~+~. #+Caption: Classify Additives #+Name: et-classify-additives #+BEGIN_SRC lisp (define-classification additive (when-classified-as non-atomic expression (eq '+ (first expression)))) #+END_SRC *** TODO Subtractive :PROPERTIES: :CREATED: <2016-05-02 Mon 14:26> :ID: c59d086f-2f49-485a-8f96-57d85e774f60 :END: Check to see whether a given expression is a subtractive by ensuring it is non-atomic and the first element is the symbol ~-~. #+Caption: Classify Subtractives #+Name: et-classify-subtractives #+BEGIN_SRC lisp (define-classification subtractive (when-classified-as non-atomic expression (eq '- (first expression)))) #+END_SRC *** TODO Powers :PROPERTIES: :CREATED: <2016-05-02 Mon 14:27> :ID: cc15dd10-7cc0-4370-9e69-daf903b30ad5 :END: This is used to classify "powers", that is to say, equations of the form $x^n$, where $n$ is any numeric. It does so by first ensuring that the expression is non-atomic, following that, it checks to see if the first element in the expression is the symbol ~expt~, the second is a variable and the third a numeric. #+Caption: Classify Powers #+Name: et-classify-powers #+BEGIN_SRC lisp (define-classification power (when-classified-as non-atomic expression (and (eq 'expt (first expression)) (classified-as-p (second expression) 'variable) (classified-as-p (third expression) 'numeric)))) #+END_SRC *** TODO Exponentials :PROPERTIES: :CREATED: <2016-05-02 Mon 15:04> :ID: a11fdd94-d56c-4749-bb22-dca75159dbcb :END: This classifies both natural and non-natural exponentials. It does so by ensuring that natural exponentials ($e^x$) are of the form ~(exp x)~, and non-natural exponentials ($a^x$) are of the form ~(expt base power)~. #+Caption: Classify Exponentials #+Name: et-classify-exponentials #+BEGIN_SRC lisp (define-classification natural-exponential (when-classified-as non-atomic expression (and (= 2 length) (eq 'exp (first expression))))) (define-classification exponential (when-classified-as non-atomic expression (and (= 3 length) (eq 'expt (first expression))))) #+END_SRC *** TODO Multiplicatives :PROPERTIES: :CREATED: <2016-05-02 Mon 14:27> :ID: feb85a20-93e3-45a1-be01-9893ecc07c53 :END: To classify multiplicative expressions, it is first ensured that they are non-atomic, and then, the first element is tested to see if it is equal to the symbol ~*~. #+Caption: Classify Multiplicatives #+Name: et-classify-multiplicatives #+BEGIN_SRC lisp (define-classification multiplicative (when-classified-as non-atomic expression (eq '* (first expression)))) #+END_SRC *** TODO Logarithmics :PROPERTIES: :CREATED: <2016-05-02 Mon 14:27> :ID: 0b733d75-e1ab-413f-8f8a-6a8a47db409c :END: This defines the classifications for logarithmic expressions, for both natural and non-natural bases. For natural bases ($\ln x$), it ensures that expressions are of the form ~(log x)~, and for non-natural bases ($\log_{b}x$) are of the form ~(log expression base-expression)~. #+Caption: Classify Lograthmics #+Name: et-classify-logarithmics #+BEGIN_SRC lisp (define-classification natural-logarithmic (when-classified-as non-atomic expression (and (= 2 length) (eq 'log (first expression))))) (define-classification logarithmic (when-classified-as non-atomic expression (and (= 3 length) (eq 'log (first expression))))) #+END_SRC *** TODO Rationals :PROPERTIES: :CREATED: <2016-05-02 Mon 14:28> :ID: a4505a66-c249-4438-a6df-81e21718e23e :END: Rationals are classified similarly to multiplicatives, checking to see whether or not they are non-atomic and checking whether or not the first element is ~/~, but rationals are also defined as only having three elements, the operation and two following operands, and thus, the length is also checked. #+Caption: Classify Rationals #+Name: et-classify-rationals #+BEGIN_SRC lisp (define-classification rational (when-classified-as non-atomic expression (and (= 3 length) (eq '/ (first expression))))) #+END_SRC *** TODO Polynomial Terms :PROPERTIES: :CREATED: <2016-05-02 Mon 14:28> :ID: 37da52b7-98a0-4a16-8a17-a62fcff2ba59 :END: To classify a polynomial term, The expression is checked to see if it satisfies one of the following: - Numeric - Variable - Power - Multiplicative that composed of a numeric and a power or variable. #+Caption: Classify Polynomial Term #+Name: et-classify-polynomial-term #+BEGIN_SRC lisp (define-classification polynomial-term (or (classified-as-p expression 'numeric) (classified-as-p expression 'variable) (classified-as-p expression 'power) (and (classified-as-p expression 'multiplicative) (= (length (rest expression)) 2) (or (and (classified-as-p (second expression) 'numeric) (or (classified-as-p (third expression) 'power) (classified-as-p (third expression) 'variable))) (and (classified-as-p (third expression) 'numeric) (or (classified-as-p (second expression) 'power) (classified-as-p (second expression) 'variable))))))) #+END_SRC *** TODO Polynomials :PROPERTIES: :CREATED: <2016-05-02 Mon 14:28> :ID: 8cd9045b-81dd-4571-930a-a852f81969c9 :END: This determines whether or not a given expression is a polynomial, that is to say it is either ~additive~ or ~subtractive~, and each and every term is classified as ~polynomial-term~, that is to say, a ~numeric~, ~power~, or a ~multiplicative~ consisting of a ~numeric~ followed by a ~power~. #+Caption: Classify Polynomials #+Name: et-classify-polynomials #+BEGIN_SRC lisp (define-classification polynomial (when-classified-as non-atomic expression (and (or (eq '- (first expression)) (eq '+ (first expression))) (reduce #'(lambda (a b) (and a b)) (map 'list #'(lambda (the-expression) (classified-as-p the-expression 'polynomial-term)) (rest expression)))))) #+END_SRC *** TODO Trigonometrics :PROPERTIES: :CREATED: <2016-05-04 Wed 13:38> :ID: 6f433cad-4b81-4a6f-ab65-981f4a924812 :END: Trigonometrics are classified as many others are, they are first checked to see if they are non-atomic, and then the first element is checked, with the following being valid symbols: - ~sin~ - ~cos~ - ~tan~ - ~csc~ - ~sec~ - ~cot~ #+Caption: Classify Trigonometrics #+Name: et-classify-trigonometrics #+BEGIN_SRC lisp (define-classification trigonometric (when-classified-as non-atomic expression (member (first expression) '(sin cos tan csc sec cot)))) (define-classification sin (when-classified-as non-atomic expression (eq 'sin (first expression)))) (define-classification cos (when-classified-as non-atomic expression (eq 'cos (first expression)))) (define-classification tan (when-classified-as non-atomic expression (eq 'tan (first expression)))) (define-classification csc (when-classified-as non-atomic expression (eq 'csc (first expression)))) (define-classification sec (when-classified-as non-atomic expression (eq 'sec (first expression)))) (define-classification cot (when (classified-as-p expression 'non-atomic) (eq 'cot (first expression)))) #+END_SRC ** TODO Classification Storage :PROPERTIES: :CREATED: <2016-05-02 Mon 13:55> :ID: ff35cd33-3c10-4a45-a2c5-32bc3fdc1acc :END: The storage of classifications is simple, they are stored as an alist in the form of ~(name . classifier)~, in the list ~*classifications*~. #+Caption: Classification Storage #+Name: et-classification-storage #+BEGIN_SRC lisp (defvar *classifications* '()) #+END_SRC ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-14 Tue 16:59> :ID: bb1d3eb5-b9bf-4378-9716-87ab57dcc8a3 :END: #+Caption: Expression Typing Assembly #+Name: et-assembly #+BEGIN_SRC lisp :tangle "larcs-classify.lisp" (in-package #:larcs.classify) <> <> <> <> <> <> <> #+END_SRC * WORKING Algebraic Manipulation [2/6] :PROPERTIES: :CREATED: <2016-06-09 Thu 09:20> :ID: b2c1fd45-b631-48f9-a093-66e1a0faa77f :END: At the core of LARCS is the algebraic manipulation library. This provides a way for other libraries to add, subtract, multiply and divide symbolically, essentially giving a programmer the ability to create or manipulate equations. While it is neither a solver nor a simplifier, it provides the base for both of them by providing manipulators and automatic expression rewriters. ** DONE Collect Variables CLOSED: [2016-05-31 Tue 18:54] :PROPERTIES: :CREATED: <2016-05-20 Fri 15:15> :ID: 6333322c-e12f-4ef6-8394-2fe219a72836 :END: Variable collection is somewhat important, and to accomplish this, I use a recursive algorithm. An expression is passed to the function, and if the expression is a variable, then the variable is collected and spit out; otherwise, if the expression is non-atomic, it is passed to the function recursively, and the returned variables are then merged into the variables list. Upon termination (no further sub-expressions), all variables are returned. (See Figure [[fig:variable-collection]].) #+Caption: Variable Collection #+Name: variable-collection #+BEGIN_SRC dot :file "imgs/variable-collection.png" :export results :cache yes digraph { start [label = "Start"]; stop [label = "Stop"]; collect [label = "Collect"]; if_var [label = "If Variable", shape = rectangle]; recurse_collect [label = "Iterate, Recurse and Collect Results"]; start -> if_var; if_var -> collect [label = "True"]; collect -> stop; if_var -> recurse_collect [label = "Non-atomic"]; recurse_collect -> start; } #+END_SRC #+Caption: Variable Collection Algorithm #+Name: fig:variable-collection #+ATTR_LATEX: :width 8cm #+RESULTS[e1586dc50921f7ba260f125e7221a978d489bd34]: variable-collection [[file:imgs/variable-collection.png]] #+Caption: Collect Variables #+Name: am-collect-variables #+BEGIN_SRC lisp (defun collect-variables (expression) (let ((variables '())) (flet ((merge-variables (variable) (pushnew variable variables))) (classification-case expression (variable (merge-variables expression)) (non-atomic (map 'list #'(lambda (expr) (dolist (variable (collect-variables expr)) (merge-variables variable))) (rest expression))))) (reverse variables))) #+END_SRC ** WORKING Term Collection :noexport: :PROPERTIES: :CREATED: <2016-04-30 Sat 22:59> :ID: c1856735-914b-4f73-8825-3e5a062113d2 :END: As there are various forms of expressions, and to provide for simplification, there must be a way to collect terms and return them in a way that allows a programmer to select all sub-expressions of a type within a large expression. #+Caption: Collect Terms #+Name: am-collect-terms #+BEGIN_SRC lisp (defun collect-terms (expression &aux (terms (rest expression))) (let ((numerics '()) (variables '()) (additives '()) (subtractives '()) (multiplicatives '()) (polynomial-terms '()) (rationals '()) (powers '()) (natural-exponentials '()) (exponentials '()) (natural-logarithmics '()) (trigonometrics '())) (dolist (term terms) (classification-case term (numeric (pushnew term numerics)) (variable (pushnew term variables)) (power (pushnew term powers)) (additive (pushnew term additives)) (subtractive (pushnew term subtractives)) (polynomial-term (pushnew term polynomial-terms)) (multiplicative (pushnew term multiplicatives)) (rational (pushnew term rationals)) (power (pushnew term powers)) (natural-exponential (pushnew term natural-exponentials)) (exponential (pushnew term exponentials)) (natural-logarithmic (pushnew term natural-logarithmics)) (trigonometric (pushnew term trigonometrics)))) (remove-if #'(lambda (expr) (null (cdr expr))) (list (cons :numerics numerics) (cons :variables variables) (cons :powers powers) (cons :additives additives) (cons :subtractives subtractives) (cons :multiplicatives multiplicatives) (cons :polynomial-terms polynomial-terms) (cons :rationals rationals) (cons :powers powers) (cons :natural-exponentials natural-exponentials) (cons :exponentials exponentials) (cons :natural-logarithmics natural-logarithmics) (cons :trigonometrics trigonometrics))))) #+END_SRC ** WORKING Polynomial Related Functions [0/6] :PROPERTIES: :CREATED: <2016-05-01 Sun 12:29> :ID: 984d0f52-4c52-4bfa-a150-f3289d25bdf1 :END: #+Caption: Polynomial Related Functions #+Name: am-polynomial-related-functions #+BEGIN_SRC lisp <> <> <> <> <> <> #+END_SRC *** TODO Get Coefficient :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: cbc927fc-ae5e-46bf-a028-2872b5c31831 :END: #+Caption: Get Coefficient #+Name: am-get-coefficient #+BEGIN_SRC lisp (defun coefficient (term) (when (classified-as-p term 'polynomial-term) (classification-case term (variable 1) (power 1) (multiplicative (second term)) (numeric term)))) #+END_SRC *** TODO Get Term Variables :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: 55729698-bd51-48af-ab42-197871c54dbb :END: #+Caption: Get Term Variable #+Name: am-get-term-variable #+BEGIN_SRC lisp (defun term-variable (term) (when (classified-as-p term 'polynomial-term) (classification-case term (power (second term)) (multiplicative (if (listp (third term)) (second (third term)) (third term))) (numeric nil)))) #+END_SRC *** TODO Get Power :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: 7d5a10da-bb30-496f-b285-470057a46db0 :END: #+Caption: Get Power #+Name: am-get-power #+BEGIN_SRC lisp (defun get-power (term) (classification-case term (numeric 0) (variable 1) (power (third term)) (multiplicative (if (listp (third term)) (third (third term)) 1)) (* 0))) #+END_SRC *** TODO Same Order :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: c56a1496-f4c2-4693-9448-5043570a752f :END: #+Caption: Same Order #+Name: am-same-order #+BEGIN_SRC lisp (defun same-order-p (term-a term-b) (= (get-power term-a) (get-power term-b))) #+END_SRC *** TODO Same Variable :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: 3806c97a-12fa-4488-b38c-d9ff3570c139 :END: #+Caption: Same Variable #+Name: am-same-variable #+BEGIN_SRC lisp (defun same-variable-p (term-a term-b) (eq (term-variable term-a) (term-variable term-b))) #+END_SRC *** TODO Is Combinable :PROPERTIES: :CREATED: <2016-05-31 Tue 19:08> :ID: db0410aa-bb12-4933-9be7-1a50d70ae90f :END: #+Caption: Is Combinable #+Name: am-is-combinable #+BEGIN_SRC lisp (defun single-term-combinable-p (term-a term-b) (and (same-order-p term-a term-b) (same-variable-p term-a term-b))) #+END_SRC ** WORKING Expression Manipulators [2/8] :PROPERTIES: :CREATED: <2016-04-30 Sat 22:58> :ID: 4fe60cc1-be66-4d5e-8922-590554d99004 :END: Foo #+Caption: Expression Manipulation #+Name: am-expression-manipulation #+BEGIN_SRC lisp <> <> <> <> <> <> <> <> #+END_SRC *** DONE Manipulator Miscellaneous Functions CLOSED: [2016-05-08 Sun 10:34] :PROPERTIES: :CREATED: <2016-05-03 Tue 15:38> :ID: 20450528-d763-4c14-a085-5ac54d4d4b85 :END: This defines the ~*manipulator-map*~, where the manipulators for various functions are stored, and defines a function to generate an arguments list given a count of arguments. #+Caption: Misc Manipulator Functions #+Name: am-misc-manipulator-functions #+BEGIN_SRC lisp (defvar *manipulator-map* '()) #+END_SRC *** WORKING Define Expression Manipulator :PROPERTIES: :CREATED: <2016-04-30 Sat 22:57> :ID: 63909972-428d-47f3-9dc3-3e1fb213aa70 :END: #+Caption: Define Expression Manipulator #+Name: am-define-expression-manipulator #+BEGIN_SRC lisp (defmacro define-operation (name arity short) (check-type name symbol) (check-type arity (integer 1 26)) (check-type short symbol) (let* ((args (gen-args-list arity)) (expression-types (map 'list #'(lambda (x) (symbolicate x '-type)) args)) (rules-name (symbolicate '*manipulators- name '*)) (base-manipulator-name (symbolicate name '-manipulator-)) (manipulator-define-name (symbolicate 'define- name '-manipulator)) (is-applicable-name (symbolicate name '-is-applicable-p)) (get-operations-name (symbolicate 'get- name '-manipulators)) (type-check-list (let ((i 0)) (loop for arg in args collect (prog1 `(classified-as-p ,arg (nth ,i types)) (incf i)))))) `(progn (push '(,short . ,name) *manipulator-map*) (defvar ,rules-name '()) (defun ,is-applicable-name (types ,@args) (and ,@type-check-list)) (defun ,get-operations-name (,@args) (remove-if #'null (map 'list #'(lambda (option) (let ((types (car option)) (name (cdr option))) (if (,is-applicable-name types ,@args) name))) ,rules-name))) (defun ,name (,@args) (funcall (first (,get-operations-name ,@args)) ,@args)) (defmacro ,manipulator-define-name ((,@expression-types) &body body) (let ((manipulator-name (symbolicate ',base-manipulator-name ,@expression-types))) `(progn (setf ,',rules-name (append ,',rules-name '(((,,@expression-types) . ,manipulator-name)))) (defun ,manipulator-name ,',args ,@body))))))) #+END_SRC #+Caption: Manipulation Example #+Name: am-ex-manip-example #+BEGIN_SRC lisp :results output raw :exports results :cache yes (defpackage #:manipulator (:use #:cl) (:import-from #:alexandria #:symbolicate) (:export #:manipulate #:classify #:classified-as-p #:classification-case #:collect-variables #:collect-terms)) (load "larcs-manipulation") (in-package #:manipulator) (format t "#+Caption: Expression Manipulator Expansion~%#+Name: am-ex-manip-expansion~%#+BEGIN_SRC lisp :exports code~%~a~%#+END_SRC" (macroexpand-1 '(define-operation frobnicate 2 frob))) #+END_SRC #+RESULTS[130aac3873c71d5e7f3a237792267b51206600c5]: am-ex-manip-example #+Caption: Expression Manipulator Expansion #+Name: am-ex-manip-expansion #+BEGIN_SRC lisp :exports code (PROGN (PUSH '(FROB . FROBNICATE) *MANIPULATOR-MAP*) (DEFVAR *MANIPULATORS-FROBNICATE* 'NIL) (DEFUN FROBNICATE-IS-APPLICABLE-P (TYPES EXPRESSION-A EXPRESSION-B) (AND (CLASSIFIED-AS-P EXPRESSION-A (NTH 0 TYPES)) (CLASSIFIED-AS-P EXPRESSION-B (NTH 1 TYPES)))) (DEFUN GET-FROBNICATE-MANIPULATORS (EXPRESSION-A EXPRESSION-B) (REMOVE-IF #'NULL (MAP 'LIST #'(LAMBDA (OPTION) (LET ((TYPES (CAR OPTION)) (NAME (CDR OPTION))) (IF (FROBNICATE-IS-APPLICABLE-P TYPES EXPRESSION-A EXPRESSION-B) NAME))) *MANIPULATORS-FROBNICATE*))) (DEFUN FROBNICATE (EXPRESSION-A EXPRESSION-B) (FUNCALL (FIRST (GET-FROBNICATE-MANIPULATORS EXPRESSION-A EXPRESSION-B)) EXPRESSION-A EXPRESSION-B)) (DEFMACRO DEFINE-FROBNICATE-MANIPULATOR ((EXPRESSION-A-TYPE EXPRESSION-B-TYPE) &BODY BODY) (LET ((MANIPULATOR-NAME (SYMBOLICATE 'FROBNICATE-MANIPULATOR- EXPRESSION-A-TYPE EXPRESSION-B-TYPE))) `(PROGN (SETF ,'*MANIPULATORS-FROBNICATE* (APPEND ,'*MANIPULATORS-FROBNICATE* '(((,EXPRESSION-A-TYPE ,EXPRESSION-B-TYPE) ,@MANIPULATOR-NAME)))) (DEFUN ,MANIPULATOR-NAME ,'(EXPRESSION-A EXPRESSION-B) ,@BODY))))) #+END_SRC *** DONE External Manipulator CLOSED: [2016-05-31 Tue 19:48] :PROPERTIES: :CREATED: <2016-05-01 Sun 14:33> :ID: 6419490c-3cb0-47e4-840a-c20af4bfb3d7 :END: The Expression Manipulators should not be touched outside of this package, as they are not designed to be used outside of it. Instead, they should be used through this simple function. It takes an action and a list of expressions. The function used to perform the action correctly is determined, and used to reduce the expressions. #+Caption: External Manipulator #+Name: am-external-manipulator #+BEGIN_SRC lisp (defun manipulate (action &rest expressions) (let ((the-manipulator (cdr (assoc action *manipulator-map*)))) (reduce the-manipulator expressions))) #+END_SRC *** WORKING Addition :PROPERTIES: :CREATED: <2016-04-30 Sat 23:08> :ID: b794486c-e493-408f-b80c-a440edae1bc8 :END: Foo #+Caption: Addition Manipulator #+Name: am-addition-manipulator #+BEGIN_SRC lisp (define-operation add 2 +) (define-add-manipulator (numeric numeric) (+ expression-a expression-b)) (define-add-manipulator (numeric additive) (let ((total expression-a) (remainder (rest expression-b)) (non-numeric '())) (dolist (element remainder) (if (classified-as-p element 'numeric) (incf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total ,@non-numeric))))) (define-add-manipulator (additive additive) (let ((total 0) (elements (append (rest expression-a) (rest expression-b))) (non-numeric '())) (dolist (element elements) (if (classified-as-p element 'numeric) (incf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total ,@non-numeric))))) (define-add-manipulator (numeric subtractive) (let ((total expression-a) (the-other (rest expression-b)) (non-numeric '())) (dolist (element the-other) (if (classified-as-p element 'numeric) (decf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total (-,@non-numeric)))))) (define-add-manipulator (numeric polynomial-term) `(+ ,expression-a ,expression-b)) (define-add-manipulator (polynomial-term polynomial-term) (if (single-term-combinable-p expression-a expression-b) (let ((new-coefficient (+ (coefficient expression-a) (coefficient expression-b))) (variable (term-variable expression-a)) (power (get-power expression-a))) `(* ,new-coefficient (expt ,variable ,power))) `(+ ,expression-a ,expression-b))) (define-add-manipulator (* numeric) (add expression-b expression-a)) #+END_SRC *** WORKING Subtraction :PROPERTIES: :CREATED: <2016-04-30 Sat 23:08> :ID: f675fd81-e995-41ee-9570-cc78261d9dc1 :END: Foo #+Caption: Subtraction Manipulator #+Name: am-subtraction-manipulator #+BEGIN_SRC lisp (define-operation subtract 2 -) (define-subtract-manipulator (numeric numeric) (- expression-a expression-b)) (define-subtract-manipulator (numeric subtractive) (let ((total expression-a) (elements (rest expression-b)) (non-numeric '())) (dolist (element elements) (if (classified-as-p element 'numeric) (decf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(- ,@(reverse non-numeric))) (t `(- ,total ,@(reverse non-numeric)))))) (define-subtract-manipulator (* numeric) (subtract expression-b expression-a)) #+END_SRC *** WORKING Multiplication :PROPERTIES: :CREATED: <2016-04-30 Sat 23:08> :ID: cddffdaa-10dd-425f-9697-3f0617162953 :END: Foo #+Caption: Multiplication Manipulators #+Name: am-multiplication-manipulators #+BEGIN_SRC lisp (define-operation multiply 2 *) (define-multiply-manipulator (numeric numeric) (* expression-a expression-b)) (define-multiply-manipulator (numeric polynomial-term) (let ((new-coefficient (* expression-a (coefficient expression-b))) (variable (term-variable expression-b)) (power (get-power expression-b))) (if (= 1 power) `(* ,new-coefficient ,variable) `(* ,new-coefficient (expt ,variable ,power))))) (define-multiply-manipulator (polynomial-term polynomial-term) (let ((new-coefficient (* (coefficient expression-a) (coefficient expression-b))) (variable (term-variable expression-b)) (power (+ (get-power expression-a) (get-power expression-b)))) `(* ,new-coefficient (expt ,variable ,power)))) #+END_SRC *** WORKING Division :PROPERTIES: :CREATED: <2016-04-30 Sat 23:09> :ID: 4c4f7034-555a-46b0-85b9-56a08cf48f9b :END: Foo #+Caption: Division Manipulators #+Name: am-division-manipulators #+BEGIN_SRC lisp (define-operation division 2 /) (define-division-manipulator (numeric numeric) (/ expression-a expression-b)) (define-division-manipulator (polynomial-term polynomial-term) (let ((new-coefficient (/ (coefficient expression-a) (coefficient expression-b))) (variable (term-variable expression-b)) (power (- (get-power expression-a) (get-power expression-b)))) `(* ,new-coefficient (expt ,variable ,power)))) #+END_SRC *** WORKING Trigonometric [0/6] :PROPERTIES: :CREATED: <2016-04-30 Sat 23:09> :ID: ba4acf37-9074-429b-a2c8-a23094e1c86b :END: Foo #+Caption: Trigonometric Manipulators #+Name: am-trigonometric-manipulators #+BEGIN_SRC lisp <> <> <> <> <> <> #+END_SRC **** WORKING Sine :PROPERTIES: :CREATED: <2016-05-08 Sun 16:22> :ID: c733c6b3-a44a-488f-8b6e-38346830b257 :END: Foo #+Caption: Sine Manipulators #+Name: am-sine-manipulators #+BEGIN_SRC lisp (define-operation sine 1 sin) (define-sine-manipulator (numeric) (sin expression-a)) #+END_SRC **** WORKING Cosine :PROPERTIES: :CREATED: <2016-05-08 Sun 16:22> :ID: c2fbd362-6932-4483-8270-e3ad72a308fd :END: Foo #+Caption: Cosine Manipulators #+Name: am-cosine-manipulators #+BEGIN_SRC lisp (define-operation cosine 1 cos) (define-cosine-manipulator (numeric) (cosine expression-a)) #+END_SRC **** WORKING Tangent :PROPERTIES: :CREATED: <2016-05-08 Sun 16:22> :ID: 07222206-1c22-411e-a8ab-13e1a627e9ef :END: Foo #+Caption: Tangent Manipulators #+Name: am-tangent-manipulators #+BEGIN_SRC lisp (define-operation tangent 1 tan) (define-tangent-manipulator (numeric) (tan expression-a)) #+END_SRC **** WORKING Cosecant :PROPERTIES: :CREATED: <2016-05-08 Sun 16:22> :ID: e77c0317-7281-45ff-b86b-8d66fb8c38ef :END: Foo #+Caption: Cosecant Manipulators #+Name: am-cosecant-manipulators #+BEGIN_SRC lisp (define-operation cosecant 1 csc) #+END_SRC **** WORKING Secant :PROPERTIES: :CREATED: <2016-05-08 Sun 16:23> :ID: 6c377c7d-ec84-4fcf-be94-db89b832c2d8 :END: Foo #+Caption: Secant Manipulators #+Name: am-secant-manipulators #+BEGIN_SRC lisp (define-operation secant 1 sec) #+END_SRC **** WORKING Cotangent :PROPERTIES: :CREATED: <2016-05-08 Sun 16:23> :ID: 70a9fb76-7ca7-4c7d-b25b-0fa94d390b6c :END: Foo #+Caption: Cotangent Manipulators #+Name: am-cotangent-manipulators #+BEGIN_SRC lisp (define-operation cotangent 1 cot) #+END_SRC ** TODO Assembly :PROPERTIES: :CREATED: <2016-04-30 Sat 23:07> :ID: d487ed31-295b-4274-aef2-b45e4fa7bec2 :END: This assembles and packages the algebraic manipulation system into a single file and library. To do so, it must first define a package, import specific symbols from other packages, and export symbols from itself. It then includes the remainder of the functionality, placing it in the file ~manipulation.lisp~. #+Caption: Packaging #+Name: am-packaging #+BEGIN_SRC lisp :tangle "larcs-manipulation.lisp" (in-package #:larcs.manipulate) <> <> <> <> <> #+END_SRC * WORKING Symbolic Solver [0/3] :PROPERTIES: :CREATED: <2016-06-11 Sat 17:55> :END: ** TODO Techniques :PROPERTIES: :CREATED: <2016-06-11 Sat 17:55> :END: ** TODO Rules :PROPERTIES: :CREATED: <2016-06-11 Sat 17:56> :END: ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-11 Sat 17:56> :END: * WORKING Symbolic Trigonometry [0/2] :PROPERTIES: :CREATED: <2016-06-11 Sat 17:58> :END: ** TODO Rules :PROPERTIES: :CREATED: <2016-06-11 Sat 17:58> :END: ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-11 Sat 17:58> :END: * WORKING Symbolic Differentiation [0/4] :PROPERTIES: :CREATED: <2016-06-13 Mon 22:45> :END: ** WORKING Rule Definition [0/3] :PROPERTIES: :CREATED: <2016-06-13 Mon 22:51> :END: *** TODO Definition :PROPERTIES: :CREATED: <2016-06-13 Mon 22:51> :ID: de915ee7-47bd-4f7f-ad06-39f0201a4651 :END: #+Caption: Rule Definition #+Name: sd-rule-definition #+BEGIN_SRC lisp (defmacro define-derivative (expression-type (&rest arguments-list) &body body) (let ((expansion-name (symbolicate expression-type '-expansion))) `(progn (when (not (member ',expression-type (mapcar #'car *rules*))) (setq *rules* (append *rules* '((,expression-type . ,expansion-name))))) (defun ,expansion-name (,@arguments-list) ,@body)))) #+END_SRC *** TODO Retrieval :PROPERTIES: :CREATED: <2016-06-13 Mon 23:08> :ID: 97d8b24e-dd75-4919-a953-cba8035cb691 :END: #+Caption: Rule Retrieval #+Name: sd-rule-retrieval #+BEGIN_SRC lisp (defun get-rule (expression) (cdr (first (remove-if #'(lambda (pair) (let ((type (first pair))) (not (classified-as-p expression type)))) ,*rules*)))) #+END_SRC *** TODO Storage :PROPERTIES: :CREATED: <2016-06-13 Mon 22:52> :ID: 372dc2d7-ee67-4eba-a9f7-3633eaf0996e :END: #+Caption: Rule Storage #+Name: sd-rule-storage #+BEGIN_SRC lisp (defvar *rules* '()) #+END_SRC ** WORKING Rules [0/9] :PROPERTIES: :CREATED: <2016-06-13 Mon 22:52> :ID: fdcebadd-b53d-4f59-99a4-4a3782e017a2 :END: #+Caption: Rules #+Name: sd-rules #+BEGIN_SRC lisp <> <> <> <> <> <> <> <> #+END_SRC *** TODO Numbers :PROPERTIES: :CREATED: <2016-06-13 Mon 23:18> :ID: bb1f9175-2e86-43a3-94b3-9467d233539c :END: #+Caption: Numbers #+Name: sd-numbers #+BEGIN_SRC lisp (define-derivative numeric (&rest junk) (declare (ignorable junk)) 0) #+END_SRC *** TODO Variables :PROPERTIES: :CREATED: <2016-06-13 Mon 23:19> :ID: ecc17ca3-2989-4908-aded-4b6e20b1855c :END: #+Caption: Variables #+Name: sd-variables #+BEGIN_SRC lisp (define-derivative variable (&rest junk) (declare (ignorable junk)) 1) #+END_SRC *** TODO Polynomial Terms :PROPERTIES: :CREATED: <2016-06-13 Mon 23:33> :ID: 6ca719d7-b584-4ae6-ae44-23bed186c6e9 :END: #+Caption: Polynomial Terms #+Name: sd-polynomial-terms #+BEGIN_SRC lisp (define-derivative polynomial-term (&rest term) (let* ((coefficient (coefficient term)) (variable (term-variable term)) (power (get-power term))) (cond ((= 1 power) coefficient) ((= 2 power) `(* ,(* coefficient power) ,variable)) (t `(* ,(* coefficient power) (expt ,variable ,(1- power))))))) #+END_SRC *** TODO Multiplicatives :PROPERTIES: :CREATED: <2016-06-14 Tue 09:57> :ID: 161906a4-5c14-4a84-bf1d-7fae9e20b14f :END: #+Caption: Multiplicatives #+Name: sd-multiplicatives #+BEGIN_SRC lisp (define-derivative multiplicative (function first &rest rest) (declare (ignore function)) (if (= 1 (length rest)) (let ((second (first rest))) (cond ((and (classified-as-p first 'numeric) (classified-as-p second 'numeric)) (* first second)) ((classified-as-p first 'numeric) `(* ,first ,(differentiate second))) ((classified-as-p second 'numeric) `(* ,second ,(differentiate first))) (t `(+ (* ,first ,(differentiate second)) (* ,second ,(differentiate first)))))) (differentiate `(* ,first (* ,@rest))))) #+END_SRC *** TODO Rationals :PROPERTIES: :CREATED: <2016-06-14 Tue 10:21> :ID: cd681a61-a143-4e02-a6a9-e7b8f9b9c77d :END: #+Caption: Rational Derivatives #+Name: sd-rationals #+BEGIN_SRC lisp (define-derivative rational (function numerator denominator) (declare (ignore function)) `(/ (- (* ,numerator ,(differentiate denominator)) (* ,denominator ,(differentiate numerator))) (expt ,denominator 2))) #+END_SRC *** TODO Additives :PROPERTIES: :CREATED: <2016-06-14 Tue 10:30> :ID: d3a07d51-977c-4b1e-9a63-0eb415977f46 :END: #+Caption: Additives #+Name: sd-additives #+BEGIN_SRC lisp (define-derivative additive (function &rest terms) (declare (ignore function)) `(+ ,@(map 'list #'(lambda (term) (differentiate term)) terms))) #+END_SRC *** TODO Subtractives :PROPERTIES: :CREATED: <2016-06-14 Tue 10:30> :ID: 063f61ee-6fd9-4286-9008-9c80ef0985a5 :END: #+Caption: Subtractives #+Name: sd-subtractives #+BEGIN_SRC lisp (define-derivative subtractive (function &rest terms) (declare (ignore function)) `(- ,@(map 'list #'(lambda (term) (differentiate term)) terms))) #+END_SRC *** TODO Exponentials and Logarithmics :PROPERTIES: :CREATED: <2016-06-14 Tue 10:37> :END: #+Caption: Exponentials and Logarithms #+Name: sd-exponentials-and-logarithms #+BEGIN_SRC lisp (define-derivative natural-exponential (function expression) (declare (ignore function)) `(exp ,expression)) (define-derivative exponential (function base power) (declare (ignore function)) (if (numberp power) (if (listp base) `(* ,power (expt ,base ,(1- power)) ,(differentiate base)) `(* ,power (expt ,base ,(1- power)))) `(* (expt ,base ,power) (log ,base)))) (define-derivative natural-logarithmic (function expression) (declare (ignore function)) `(/ ,(differentiate expression) ,expression)) (define-derivative logarithmic (function number base) (declare (ignore function)) `(/ ,(differentiate (cons 'log number)) (* (log ,base) ,number))) #+END_SRC *** TODO Trigonometric Functions :PROPERTIES: :CREATED: <2016-06-14 Tue 10:45> :END: #+Caption: Trigonometric Functions #+Name: sd-trigonometric-functions #+BEGIN_SRC lisp (define-derivative sin (function expression) (declare (ignore function)) `(* ,(differentiate expression) (cos ,expression))) (define-derivative cos (function expression) (declare (ignore function)) `(* ,(differentiate expression) (- (sin ,expression)))) (define-derivative tan (function expression) (declare (ignore function)) `(* ,(differentiate expression) (expt (sec ,expression) 2))) (define-derivative csc (function expression) (declare (ignore function)) `(* ,(differentiate expression) (- (csc ,expression)) (cot ,expression))) (define-derivative cot (function expression) (declare (ignore function)) `(* ,(differentiate expression) (- (expt (csc ,expression) 2)))) #+END_SRC ** TODO Driver :PROPERTIES: :CREATED: <2016-06-13 Mon 22:59> :ID: b40ed5ad-2eb7-43b1-bab7-39592894e5be :END: #+Caption: Derivative Driver #+Name: sd-derivative-driver #+BEGIN_SRC lisp (defun differentiate (function) (let ((rule (get-rule function))) (when rule (apply rule (ensure-list function))))) #+END_SRC ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-13 Mon 22:46> :ID: d87d49e3-8245-4ff0-aaf0-57b9e19edeba :END: #+Caption: Symbolic Differentiation #+Name: sd-symbolic-differentiation #+BEGIN_SRC lisp :tangle "larcs-differentiate.lisp" (in-package #:larcs.differentiate) <> <> <> <> <> #+END_SRC * WORKING Symbolic Integration [0/3] :PROPERTIES: :CREATED: <2016-06-11 Sat 18:02> :END: ** TODO Rules :PROPERTIES: :CREATED: <2016-06-11 Sat 18:02> :END: ** TODO Techniques :PROPERTIES: :CREATED: <2016-06-11 Sat 18:02> :END: ** TODO Assembly :PROPERTIES: :CREATED: <2016-06-11 Sat 18:02> :END: * WORKING Conversion from Symbolic Expressions to Typeset Display Formats [0/5] :PROPERTIES: :CREATED: <2016-06-09 Thu 09:23> :ID: ed9f4311-bf9f-42df-8f46-254658b93c10 :END: The goal of this portion of the CAS is to produce \LaTeX{} formulae that can be inserted into a document for whatever reason, and it does so using rewrite rules, this time, rewriting s-expressions (~(+ (* 3 (expt x 3)) (expt x 2) (* 4 x) 22)~) to the \LaTeX{} equivalent, ~${{{{3} \cdot {{x ^ {3}}}}} + {{x ^ {2}}} + {{{4} \cdot {x}}} + {22}}$~ (${{{{3} \cdot {{x ^ {3}}}}} + {{x ^ {2}}} + {{{4} \cdot {x}}} + {22}}$). ** WORKING Matching And Generating [0/3] :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :END: *** TODO Define Rule :PROPERTIES: :ID: d4f77ac3-a059-4fb6-b936-1b9e972646ee :CREATED: <2016-04-30 Sat 16:19> :END: #+Caption: Define Matching Rule #+Name: tex-def-match-rule #+BEGIN_SRC lisp (defmacro defrule (name (on arity &optional type) (&rest arguments) &body rule) (let ((match-expression (generate-match-expression on arity type 'function 'arg-count)) (test-name (symbolicate name '-test)) (expansion-name (symbolicate name '-expansion))) `(progn (defun ,test-name (function &rest arguments &aux (arg-count (length arguments))) ,match-expression) (defun ,expansion-name (,@arguments) ,@rule) (setf (aget *rules* ',name) (make-rule :name ',name :test-function #',test-name :expansion-function #',expansion-name)) ',name))) #+END_SRC *** TODO Store Rules :PROPERTIES: :ID: 002ea704-4286-429f-9149-0f29fb73c503 :CREATED: <2016-04-30 Sat 16:19> :END: #+Caption: Rule Storage #+Name: tex-rule-storage #+BEGIN_SRC lisp (defstruct (rule (:type list)) name test-function expansion-function) (defvar *rules* '()) #+END_SRC *** TODO Retrieve Rule :PROPERTIES: :CREATED: <2016-04-30 Sat 15:25> :ID: e3f34100-d0a5-4039-8b9d-115cfcb0804e :END: #+Caption: Retrieve Rule #+Name: tex-retrieve-rule #+BEGIN_SRC lisp (defun get-expansion (expression) (rule-expansion-function (rest (first (remove-if-not #'(lambda (nte) (let ((test (rule-test-function (rest nte)))) (apply test expression))) ,*rules*))))) #+END_SRC ** WORKING Rules [0/10] :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :END: *** TODO Multiplication :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :ID: 5417a6bf-f265-418a-984b-6bfd14b79a80 :END: #+Caption: Multiplication Rule #+Name: tex-multiplication-rule #+BEGIN_SRC lisp (defrule multiplication (* 2 >=) (&rest elements) (format nil "{~{{~a}~^ \\cdot ~}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) #+END_SRC *** TODO Division :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :ID: 056aa99c-f2b9-4ab6-99ba-bfb87e3baed5 :END: #+Caption: Division Rule #+Name: tex-division-rule #+BEGIN_SRC lisp (defrule division (/ 2 =) (a b) (format nil "{\\frac{~a}{~a}}" (convert-to-tex (ensure-list a)) (convert-to-tex (ensure-list b)))) #+END_SRC *** TODO Addition :PROPERTIES: :ID: 68f3dac3-9f0a-4fee-8da6-a39f4491f3ce :CREATED: <2016-04-30 Sat 16:19> :END: #+Caption: Rule for addition #+Name: tex-addition-rule #+BEGIN_SRC lisp (defrule addition (+ 2 >=) (&rest elements) (format nil "{~{{~a}~^ + ~}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) #+END_SRC *** TODO Subtraction :PROPERTIES: :ID: 9a908130-af5e-4c87-bb07-13bd66c35fcf :CREATED: <2016-04-30 Sat 16:19> :END: #+Caption: Subtraction Rule #+Name: tex-subtraction-rule #+BEGIN_SRC lisp (defrule subtraction (- 2 >=) (&rest elements) (format nil "{~{{~a}~^ - ~}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) #+END_SRC *** TODO Exponentials and Logarithmics :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :ID: 269dc47f-5062-4081-a08e-d50188af6a57 :END: #+Caption: Exponentials and Logarithms #+Name: tex-exponentials-and-logarithms #+BEGIN_SRC lisp (defrule exp (exp 1 =) (expression) (format nil "{e^{~a}}" (convert-to-tex (ensure-list expression)))) (defrule expt (expt 2 =) (base exponent) (format nil "{~a ^ {~a}}" (convert-to-tex (ensure-list base)) (convert-to-tex (ensure-list exponent)))) (defrule natlog (log 1 =) (expression) (format nil "{\\ln {~a}}" (convert-to-tex (ensure-list expression)))) (defrule logarithm (log 2 =) (expression base) (format nil "{\\log_{~a}~a}" (convert-to-tex (ensure-list base)) (convert-to-tex (ensure-list expression)))) #+END_SRC *** TODO Trigonometrics :PROPERTIES: :CREATED: <2016-04-30 Sat 16:19> :ID: 837806c9-7174-43a3-80b2-355b645d46ed :END: #+Caption: Trigonometric Functions #+Name: tex-trigonometrics #+BEGIN_SRC lisp (defrule sin (sin 1 =) (arg) (format nil "{\\sin {~a}}" (convert-to-tex (ensure-list arg)))) (defrule cos (cos 1 =) (arg) (format nil "{\\cos {~a}}" (convert-to-tex (ensure-list arg)))) (defrule tan (tan 1 =) (arg) (format nil "{\\tan {~a}}" (convert-to-tex (ensure-list arg)))) (defrule csc (csc 1 =) (arg) (format nil "{\\csc {~a}}" (convert-to-tex (ensure-list arg)))) (defrule sec (sec 1 =) (arg) (format nil "{\\sec {~a}}" (convert-to-tex (ensure-list arg)))) (defrule cot (cot 1 =) (arg) (format nil "{\\cot {~a}}" (convert-to-tex (ensure-list arg)))) #+END_SRC *** TODO Logic :PROPERTIES: :CREATED: <2016-04-30 Sat 18:29> :ID: 74d12931-343f-4982-945d-738a3e38a1db :END: #+Caption: Logic Rules #+Name: tex-logic-rules #+BEGIN_SRC lisp (defrule and (and 2 >=) (&rest elements) (format nil "{~{{~a}~^ \\wedge ~}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) (defrule or (or 2 >=) (&rest elements) (format nil "{~{{~a}~^ \\vee ~}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) (defrule not (not 1 =) (&rest elements) (format nil "{\\not {~a}}" (map 'list #'convert-to-tex (map 'list #'ensure-list elements)))) #+END_SRC *** TODO Equality :PROPERTIES: :CREATED: <2016-04-30 Sat 18:29> :ID: f75273d2-d523-4404-925b-af6fd01c7520 :END: #+Caption: Equality Rules #+Name: tex-equality-rules #+BEGIN_SRC lisp (defrule = (= 2 =) (lhs rhs) (format nil "{{~a} = {~a}}" (convert-to-tex (ensure-list lhs)) (convert-to-tex (ensure-list rhs)))) #+END_SRC *** TODO Summation and Integration :PROPERTIES: :CREATED: <2016-04-30 Sat 18:30> :ID: dda2827a-cee5-4efc-bd9a-4dd953829b5c :END: #+Caption: Summation and Integration #+Name: tex-summation-and-integration #+BEGIN_SRC lisp (defrule sum (sum 3 =) (start stop expression) (format nil "{\\sum_{~a}^{~a} {~a}}" (convert-to-tex (ensure-list start)) (convert-to-tex (ensure-list stop)) (convert-to-tex (ensure-list expression)))) (defrule integrate (integrate 4 =) (from to expression wrt) (format nil "{\\int_{~a}^{~a} ~a\\,\mathrm{d}~a}" (convert-to-tex (ensure-list from)) (convert-to-tex (ensure-list to)) (convert-to-tex (ensure-list expression)) (convert-to-tex (ensure-list wrt)))) #+END_SRC *** TODO Specialty :PROPERTIES: :CREATED: <2016-04-30 Sat 18:30> :ID: f4e6b309-289d-4b32-bc55-4740ec86a113 :END: #+Caption: Specialty #+Name: tex-specialty #+BEGIN_SRC lisp (defrule parens (parens 2 =) (type inside) (let* ((types '((square . ("[" . "]")) (curly . ("{" . "}")) (smooth . ("(" . ")")))) (left (cadr (assoc type types))) (right (cddr (assoc type types)))) (format nil "{\\left~a {~a} \\right~a}" left (convert-to-tex (ensure-list inside)) right))) #+END_SRC ** TODO Conversion Driver :PROPERTIES: :ID: b395bdb7-7b98-49a1-b6d6-4256fb40d4fa :CREATED: <2016-04-30 Sat 16:19> :END: #+Caption: Conversion Driver #+Name: tex-conversion-driver #+BEGIN_SRC lisp (defvar *tex-outputp* nil) (declaim (special *tex-outputp*)) (defmacro with-tex-output (&body body) `(if *tex-outputp* (progn ,@body) (let ((*tex-outputp* t)) (format nil "$~a$" (progn ,@body))))) (defun convert-to-tex (function) (check-type function cons) (let ((op (first function))) (with-tex-output (cond ((numberp op) (format nil "~a" op)) ((and (symbolp op) (= 1 (length function))) (let ((symbol-pair (assoc op *special-symbols-to-sequences*))) (if (null symbol-pair) (string-downcase op) (cdr symbol-pair)))) (t (let ((expansion-function (get-expansion function))) (if (functionp expansion-function) (apply expansion-function (rest function)) (error "Undefined expansion for operation: ~a." op)))))))) #+END_SRC ** TODO Miscellaneous Functions :PROPERTIES: :CREATED: <2016-04-30 Sat 16:09> :ID: a4ab8a72-0b09-453c-b936-2470d5429c05 :END: #+Caption: Misc Functions #+Name: tex-misc-functions #+BEGIN_SRC lisp ;; (defvar *special-symbols-to-sequences* ;; '((alpha . "\\alpha") ;; (beta . "\\beta") ;; (gamma . "\\gamma") ;; (delta . "\\delta") ;; (epsilon . "\\epsilon") ;; (varepsilon . "\\varepsilon") ;; (zeta . "\\zeta") ;; (eta . "\\eta") ;; (theta . "\\theta") ;; (vartheta . "\\vartheta") ;; (gamma . "\\gamma") (kappa . "\\kappa") ;; (lambda . "\\lambda") ;; (mu . "\\mu") ;; (nu . "\\nu") ;; (xi . "\\xi") ;; (omicron . "\\o") ;; (pi . "\\pi") ;; (varpi . "\\varpi") ;; (rho . "\\rho") ;; (varrho . "\\varrho") ;; (sigma . "\\sigma") ;; (varsigm . "\\varsigm") ;; (tau . "\\tau") ;; (upsilon . "\\upsilon") ;; (phi . "\\phi") ;; (varphi . "\\varphi") ;; (chi . "\\chi") ;; (psi . "\\psi") ;; (omega . "\\omega") ;; (big-gamma . "\\Gamma") ;; (big-delta . "\\Delta") ;; (big-theta . "\\Theta") ;; (big-lambda . "\\Lambda") ;; (big-xi . "\\Xi") ;; (big-pi . "\\Pi") ;; (big-sigma . "\\Sigma") ;; (big-upsilon . "\\Upsilon") ;; (big-phi . "\\Phi") ;; (big-psi . "\\Psi") ;; (big-omega . "\\Omega"))) #+END_SRC ** TODO Assembly :PROPERTIES: :ID: fdef3016-cb12-43ad-ba5f-14dd6ccd973c :CREATED: <2016-04-30 Sat 16:25> :END: #+Caption: Packaging #+Name: tex-packaging #+BEGIN_SRC lisp :tangle "larcs-tex.lisp" (in-package #:larcs.to-tex) <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> #+END_SRC * WORKING Library Assembly [0/2] :PROPERTIES: :CREATED: <2016-06-11 Sat 22:30> :END: ** TODO Package Definitions :PROPERTIES: :CREATED: <2016-06-13 Mon 15:00> :ID: 573a8352-8cbe-408c-8c27-3cf0b66da885 :END: #+Caption: LARCS Packages #+Name: larcs-packages #+BEGIN_SRC lisp :tangle "larcs-packages.lisp" (defpackage #:larcs.common (:use #:cl) (:import-from #:alexandria #:symbolicate) (:export #:generate-match-expression #:gen-args-list #:*special-symbols-to-sequences* #:*constant-names*)) (defpackage #:larcs.classify (:use #:cl #:larcs.common) (:import-from #:alexandria #:symbolicate) (:export #:classify #:classified-as-p #:classification-case)) (defpackage #:larcs.manipulate (:use #:cl #:larcs.common #:larcs.classify) (:import-from #:alexandria #:symbolicate) (:export #:manipulate #:collect-variables #:collect-terms #:coefficient #:term-variable #:get-power #:same-order-p #:save-variable-p #:single-term-combinable-p)) (defpackage #:larcs.differentiate (:use #:cl #:larcs.common #:larcs.classify #:larcs.manipulate) (:import-from #:alexandria #:symbolicate) (:import-from #:com.informatimago.common-lisp.cesarum.list #:aget #:ensure-list) (:export :differentiate)) (defpackage #:larcs.to-tex (:use #:cl #:larcs.common #:larcs.classify) (:import-from #:alexandria #:symbolicate) (:import-from #:com.informatimago.common-lisp.cesarum.list #:aget #:ensure-list) (:export #:convert-to-tex)) #+END_SRC ** TODO System Definition :PROPERTIES: :CREATED: <2016-06-13 Mon 15:00> :ID: 35b2ec01-a933-4b5b-af73-b6b7f1c45cb6 :END: #+Caption: Library System Definition #+Name: library-system-definition #+BEGIN_SRC lisp :tangle "larcs-lib.asd" (asdf:defsystem #:larcs-lib :description "A CAS Library for use within Lisp Software." :author "Samuel Flint " :license "GNU GPLv3 or Later" :depends-on (#:alexandria #:com.informatimago) :serial t :components ((:file "larcs-packages") (:file "larcs-common") (:file "larcs-classify") (:file "larcs-manipulation") (:file "larcs-derive") (:file "larcs-differentiate") (:file "larcs-tex"))) #+END_SRC * WORKING Text User Interface [0/2] :PROPERTIES: :CREATED: <2016-06-11 Sat 22:31> :END: ** TODO System Definition :PROPERTIES: :CREATED: <2016-06-13 Mon 14:51> :END: ** TODO Functionality :PROPERTIES: :CREATED: <2016-06-13 Mon 14:51> :END: * WORKING Graphical User Interface [0/3] :PROPERTIES: :CREATED: <2016-06-13 Mon 14:51> :END: ** TODO System Definition :PROPERTIES: :CREATED: <2016-06-13 Mon 14:51> :END: ** TODO Interface Elements :PROPERTIES: :CREATED: <2016-06-13 Mon 14:52> :END: ** TODO Interface Functionality :PROPERTIES: :CREATED: <2016-06-13 Mon 14:52> :END: