(save-buffer) (let ((org-confirm-babel-evaluate (lambda (lang body) (declare (ignorable lang body)) nil))) (org-latex-export-to-pdf))
(save-buffer) (let ((python-indent-offset 4)) (org-babel-tangle))
CLOSED: [2016-05-01 Sun 14:33]
As a part of my lisp-based Computer Algebra System, an algebraic manipulation toolkit is required. This will be used to simplify equations, or for that matter solve them. This creates this toolkit, but does not create a complete simplifier or solver. It does this by providing manipulators and automatic rewriters. These together will provide simplification and solving utilities.
[0/5]
<<classification-storage>> <<define-classification>> <<check-classification>> <<classify-expression>> <<possible-classifications>>
(defvar *classifications* '())
(defmacro defclassification (name &body body) `(progn (defun ,(symbolicate name '-classifier) (expression &aux (length (if (listp expression) (length expression) 1))) (declare (ignorable length)) ,@body) (pushnew '(,name . ,(symbolicate name '-classifier)) *classifications*) ',name))
(defun expression-type-p (expression type) (if (eq '* type) t (funcall (cdr (assoc type *classifications*)) expression)))
(defun classify (expression) (remove-if #'null (map 'list #'(lambda (name-and-checker) (let ((name (car name-and-checker)) (checker (cdr name-and-checker))) (if (funcall checker expression) name nil))) ,*classifications*))) (defun expression-type (expression) (first (classify expression)))
[0/11]
<<classify-numbers>> <<classify-variables>> <<classify-additives>> <<classify-subtractives>> <<classify-powers>> <<classify-exponentials>> <<classify-multiplicatives>> <<classify-logarithmics>> <<classify-rationals>> <<classify-polynomial-term>> <<classify-polynomials>>
(defclassification numeric (numberp expression))
(defclassification variable (symbolp expression))
(defclassification additive (when (listp expression) (eq '+ (first expression))))
(defclassification subtractive (when (listp expression) (eq '- (first expression))))
(defclassification power (when (listp expression) (and (eq 'expt (first expression)) (expression-type-p (second expression) 'variable) (expression-type-p (third expression) 'numeric))))
(defclassification natural-exponential (when (listp expression) (and (= 2 length) (eq 'exp (first expression))))) (defclassification exponential (when (listp expression) (and (= 3 length) (eq 'expt (first expression)))))
(defclassification multiplicative (when (listp expression) (eq '* (first expression))))
(defclassification natural-logarithmic (when (listp expression) (and (= 2 length) (eq 'log (first expression))))) (defclassification logarithmic (when (listp expression) (and (= 3 length) (eq 'log (first expression)))))
(defclassification rational (when (listp expression) (and (= 3 length) (eq '/ (first expression)))))
(defclassification polynomial-term (or (expression-type-p expression 'numeric) (expression-type-p expression 'variable) (expression-type-p expression 'power) (and (expression-type-p expression 'multiplicative) (= (length (rest expression)) 2) (or (and (expression-type-p (second expression) 'numeric) (or (expression-type-p (third expression) 'power) (expression-type-p (third expression) 'variable))) (and (expression-type-p (third expression) 'numeric) (or (expression-type-p (second expression) 'power) (expression-type-p (second expression) 'variable)))))))
(defclassification polynomial (when (listp expression) (and (or (eq '- (first expression)) (eq '+ (first expression))) (reduce #'(lambda (a b) (and a b)) (map 'list #'(lambda (the-expression) (expression-type-p the-expression 'polynomial-term)) (rest expression))))))
Foo
(defun collect-terms (expression) (let ((terms (rest expression))) ))
(defun coefficient (term) (when (expression-type-p term 'polynomial-term) (if (expression-type-p term 'multiplicative) (second term) (if (expression-type-p term 'variable) 1 term)))) (defun term-variable (term) (when (expression-type-p term 'polynomial-term) (cond ((expression-type-p term 'multiplicative) (second (third term))) ((expression-type-p term 'power) (second term)) (t nil)))) (defun get-power (term) (cond ((expression-type-p term 'polynomial-term) (third (third term))) ((expression-type-p term 'power) (third term)) (t 0))) (defun same-order-p (term-a term-b) (= (get-power term-a) (get-power term-b))) (defun same-variable-p (term-a term-b) (eq (term-variable term-a) (term-variable term-b))) (defun single-term-combinable-p (term-a term-b) (and (same-order-p term-a term-b) (same-variable-p term-a term-b)))
[0/8]
Foo
<<misc-manipulator-functions>> <<define-expression-manipulator>> <<external-manipulator>> <<addition-manipulator>> <<subtraction-manipulator>> <<multiplication-manipulators>>
(defvar *manipulator-map* '()) (defun gen-args-list (count) (let ((letters '(a b c d e f g h i j k l m n o p q r s t u v w x y z))) (loop for i from 1 to count collect (symbolicate 'expression- (nth (1- i) letters)))))
(defmacro defoperation (name arity short) (check-type name symbol) (check-type arity (integer 1 26)) (check-type short symbol) (let* ((args (gen-args-list arity)) (rules-name (symbolicate '*manipulators- name '*)) (base-manipulator-name (symbolicate name '-manipulator-)) (manipulator-define-name (symbolicate 'define- name '-manipulator)) (is-applicable-name (symbolicate name '-is-applicable-p)) (get-operations-name (symbolicate 'get- name '-manipulators)) (type-check-list (let ((i 0)) (loop for arg in args collect (prog1 `(expression-type-p ,arg (nth ,i types)) (incf i)))))) `(progn (push '(,short . ,name) *manipulator-map*) (defvar ,rules-name '()) (defun ,is-applicable-name (types ,@args) (and ,@type-check-list)) (defun ,get-operations-name (,@args) (remove-if #'null (map 'list #'(lambda (option) (let ((types (car option)) (name (cdr option))) (if (,is-applicable-name types ,@args) name))) ,rules-name))) (defun ,name (,@args) (funcall (first (,get-operations-name ,@args)) ,@args)) (defmacro ,manipulator-define-name ((&rest types) &body body) (let ((manipulator-name (symbolicate ',base-manipulator-name (format nil "~a" (1+ (length ,rules-name)))))) `(progn (setf ,',rules-name (append ,',rules-name '((,types . ,manipulator-name)))) (defun ,manipulator-name ,',args ,@body)))))))
;; (defun manipulate (action &rest expressions) ;; (case action ;; (+ ;; (reduce #'add expressions)) ;; (- ;; (reduce #'subtract expressions)) ;; (* ;; (reduce #'multiply expressions)) ;; (/ ;; (reduce #'divide expressions)) ;; (sin ;; (reduce #'manip-sin expressions)) ;; (cos ;; (reduce #'manip-cos expressions)) ;; (tan ;; (reduce #'manip-tan expressions)) ;; (expt ;; (reduce #'powers expressions))))
Foo
(defoperation add 2 +) (define-add-manipulator (numeric numeric) (+ expression-a expression-b)) (define-add-manipulator (numeric additive) (let ((total expression-a) (remainder (rest expression-b)) (non-numeric '())) (dolist (element remainder) (if (expression-type-p element 'numeric) (incf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total ,@non-numeric))))) (define-add-manipulator (additive additive) (let ((total 0) (elements (append (rest expression-a) (rest expression-b))) (non-numeric '())) (dolist (element elements) (if (expression-type-p element 'numeric) (incf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total ,@non-numeric))))) (define-add-manipulator (numeric subtractive) (let ((total expression-a) (the-other (rest expression-b)) (non-numeric '())) (dolist (element the-other) (if (expression-type-p element 'numeric) (decf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(+ ,@non-numeric)) (t `(+ ,total (-,@non-numeric)))))) (define-add-manipulator (numeric polynomial-term) `(+ ,expression-a ,expression-b)) (define-add-manipulator (polynomial-term polynomial-term) (if (single-term-combinable-p expression-a expression-b) (let ((new-coefficient (+ (coefficient expression-a) (coefficient expression-b))) (variable (term-variable expression-a)) (power (get-power expression-a))) `(* ,new-coefficient (expt ,variable ,new-power))) `(+ ,expression-a ,expression-b))) (define-add-manipulator (* numeric) (add expression-b expression-a))
Foo
(defoperation subtract 2 -) (define-subtract-manipulator (numeric numeric) (- expression-a expression-b)) (define-subtract-manipulator (numeric subtractive) (let ((total expression-a) (elements (rest expression-b)) (non-numeric '())) (dolist (element elements) (if (expression-type-p element 'numeric) (decf total element) (push element non-numeric))) (cond ((null non-numeric) total) ((= 0 total) `(- ,@(reverse non-numeric))) (t `(- ,total ,@(reverse non-numeric)))))) (define-subtract-manipulator (* numeric) (subtract expression-b expression-a))
Foo
(defoperation multiply 2 *)
Foo
Foo
Foo
(defpackage #:manipulator (:use #:cl) (:import-from #:alexandria #:symbolicate) (:export #:manipulate)) (in-package #:manipulator) <<determine-expression-type>> <<polynomial-related-functions>> <<collect-terms>> <<expression-manipulation>>