123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- ;;;; derive.lisp
- ;;;;
- ;;;; Copyright (c) 2015 Samuel W. Flint <swflint@flintfam.org>
- (defpackage #:derive
- (:use #:cl)
- (:export :derive
- :csc
- :sec
- :define-equation-functions
- :take-derivative))
- (in-package #:derive)
- ;;; "derive" goes here.
- (defun derive (equation)
- "derive -- (derive equation)
- Derives an equation using the normal rules of differentiation."
- (declare (cons equation))
- (let ((op (first equation)))
- (cond
- ((member op '(sin cos tan csc sec cot))
- (chain equation))
- ((equal op 'expt)
- (power (rest equation)))
- ((equal op '*)
- (mult (rest equation)))
- ((equal op '/)
- (div (rest equation)))
- ((or (equal op '+)
- (equal op '-))
- (apply #'plus/minus op (rest equation)))
- ((numberp op)
- 0)
- (t
- 1))))
- (defun plus/minus (op &rest args)
- "plus/minus -- (plus/minus op &rest args)
- Derive for plus/minus"
- (declare (symbol op)
- (cons args))
- (let ((out (list op)))
- (loop for arg in args
- do (let ((derivative (derive (if (not (listp arg)) (list arg) arg))))
- (if (eq 0 derivative)
- nil
- (push derivative out))))
- (if (equal (list op) out)
- nil
- (reverse out))))
- (defun mult (equation)
- "mult -- (mult equation)
- Derive multiplication"
- (if (= (length equation) 2)
- (if (numberp (first equation))
- `(* ,(first equation) ,(derive (if (not (listp (second equation))) (list (second equation)) (second equation))))
- (if (numberp (second equation))
- `(* ,(second equation) ,(derive (if (not (listp (first equation))) (list (first equation)) (first equation))))
- `(+ (* ,(first equation) ,(derive (second equation)))
- (* ,(second equation) ,(derive (first equation))))))
- (mult (list (first equation) (mult (rest equation))))))
- (defun div (equation)
- "div -- (div equation)
- Derive using quotient rule"
- (let ((numerator (nth 0 equation))
- (denominator (nth 1 equation)))
- `(/ (- (* ,numerator ,(derive denominator))
- (* ,denominator ,(derive numerator)))
- (expt ,denominator 2))))
- (defun chain (equation)
- "chain -- (chain equation)
- Apply the chain rule to the equation"
- (declare (cons equation))
- (let ((op (first equation))
- (arg (second equation)))
- (case op
- (sin
- `(* (cos ,arg) ,(derive arg)))
- (cos
- `(* (- (sin ,arg)) ,(derive arg)))
- (tan
- `(* (expt (sec ,arg) 2) ,(derive arg)))
- (csc
- `(* (- (csc ,arg)) (cot ,arg) ,(derive arg)))
- (sec
- `(* (sec ,arg) (tan ,arg) ,(derive arg)))
- (cot
- `(* (- (expt (csc ,arg) 2)) ,(derive arg))))))
- (defun power (eq)
- "power -- (power rest)
- Apply the Power Rule"
- (declare (cons eq))
- (let ((equation (nth 0 eq))
- (power (nth 1 eq)))
- (if (listp equation)
- `(* ,power (expt ,(derive equation) ,(1- power)))
- `(* ,power (expt ,equation ,(1- power))))))
- (defun csc (x)
- "csc -- (csc x)
- Calculate the cosecant of x"
- (/ (sin x)))
- (defun sec (x)
- "sec -- (sec x)
- Calculate the secant of x"
- (/ (cos x)))
- (defmacro define-equation-functions (name variable equation)
- (let ((derivative-name
- (intern (string-upcase (format nil "d/d~a-~a" variable name))))
- (derivative (derive equation)))
- `(progn
- (defun ,name (,variable)
- ,equation)
- (defun ,derivative-name (,variable)
- ,derivative))))
- (defmacro take-derivative (equation)
- (let ((derivative (derive equation)))
- `',derivative))
- ;;; End derive
|