
ASDF: Another System Definition

Facility

This manual describes ASDF, a system definition facility for Common Lisp programs and
libraries.

You can find the latest version of this manual at http://common-lisp.net/project/

asdf/asdf.html.

ASDF Copyright c© 2001-2014 Daniel Barlow and contributors.

This manual Copyright c© 2001-2014 Daniel Barlow and contributors.

This manual revised c© 2009-2014 Robert P. Goldman and Francois-Rene Rideau.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

http://common-lisp.net/project/asdf/asdf.html
http://common-lisp.net/project/asdf/asdf.html

i

Table of Contents

1 Introduction . 1

2 Quick start summary . 2

3 Loading ASDF . 3
3.1 Loading a pre-installed ASDF . 3
3.2 Checking whether ASDF is loaded . 3
3.3 Upgrading ASDF . 4

3.3.1 Upgrading your implementation’s ASDF 4
3.3.2 Issues with upgrading ASDF . 4

3.4 Loading ASDF from source . 5

4 Configuring ASDF . 6
4.1 Configuring ASDF to find your systems . 6
4.2 Configuring ASDF to find your systems — old style 7
4.3 Configuring where ASDF stores object files . 8
4.4 Resetting the ASDF configuration . 8

5 Using ASDF . 9
5.1 Loading a system . 9
5.2 Other Operations . 9
5.3 Moving on . 9

6 Defining systems with defsystem 10
6.1 The defsystem form . 10
6.2 A more involved example . 11
6.3 The defsystem grammar . 11

6.3.1 Component names . 13
6.3.2 Component types . 13
6.3.3 System class names . 13
6.3.4 Defsystem depends on . 13
6.3.5 Weakly depends on . 13
6.3.6 Pathname specifiers . 14
6.3.7 Version specifiers . 15
6.3.8 Require . 15
6.3.9 Using logical pathnames . 15
6.3.10 Serial dependencies . 16
6.3.11 Source location (:pathname) . 16
6.3.12 if-feature option . 17
6.3.13 if-component-dep-fails option . 17
6.3.14 feature requirement . 17

6.4 Other code in .asd files . 17
6.5 The package-inferred-system extension . 18

ii

7 The Object model of ASDF 20
7.1 Operations . 20

7.1.1 Predefined operations of ASDF . 21
7.1.2 Creating new operations . 24

7.2 Components . 26
7.2.1 Common attributes of components . 28

7.2.1.1 Name . 28
7.2.1.2 Version identifier . 29
7.2.1.3 Required features . 29
7.2.1.4 Dependencies . 29
7.2.1.5 pathname . 30
7.2.1.6 properties . 31

7.2.2 Pre-defined subclasses of component . 31
7.2.3 Creating new component types . 32

7.3 Dependencies . 32
7.4 Functions . 33

8 Controlling where ASDF searches for systems
. 34

8.1 Configurations . 34
8.2 Truenames and other dangers . 35
8.3 XDG base directory . 35
8.4 Backward Compatibility . 35
8.5 Configuration DSL . 36
8.6 Configuration Directories . 38

8.6.1 The :here directive . 38
8.7 Shell-friendly syntax for configuration . 39
8.8 Search Algorithm . 39
8.9 Caching Results . 40
8.10 Configuration API . 40
8.11 Introspection . 41

8.11.1 *source-registry-parameter* variable . 41
8.11.2 Information about system dependencies 41

8.12 Status . 41
8.13 Rejected ideas . 41
8.14 TODO . 42
8.15 Credits for the source-registry . 42

iii

9 Controlling where ASDF saves compiled files
. 43

9.1 Configurations . 43
9.2 Backward Compatibility . 44
9.3 Configuration DSL . 44
9.4 Configuration Directories . 47
9.5 Shell-friendly syntax for configuration . 47
9.6 Semantics of Output Translations . 47
9.7 Caching Results . 48
9.8 Output location API . 48
9.9 Credits for output translations . 49

10 Error handling . 50
10.1 ASDF errors . 50
10.2 Compilation error and warning handling . 50

11 Miscellaneous additional functionality 51
11.1 Controlling file compilation . 51
11.2 Controlling source file character encoding . 52
11.3 Miscellaneous Functions . 53
11.4 Some Utility Functions . 55

12 Getting the latest version 59

13 FAQ . 60
13.1 “Where do I report a bug?” . 60
13.2 “What has changed between ASDF 1, ASDF 2 and ASDF 3?”

. 60
13.2.1 What are ASDF 1, ASDF 2, and ASDF 3? 60
13.2.2 How do I detect the ASDF version? . 60
13.2.3 ASDF can portably name files in subdirectories 61
13.2.4 Output translations . 61
13.2.5 Source Registry Configuration . 61
13.2.6 Usual operations are made easier to the user 62
13.2.7 Many bugs have been fixed . 62
13.2.8 ASDF itself is versioned . 62
13.2.9 ASDF can be upgraded . 63
13.2.10 Decoupled release cycle . 63
13.2.11 Pitfalls of the transition to ASDF 2 . 63

13.3 Issues with installing the proper version of ASDF 64
13.3.1 “My Common Lisp implementation comes with an outdated

version of ASDF. What to do?” . 64
13.3.2 “I’m a Common Lisp implementation vendor. When and

how should I upgrade ASDF?” . 64
13.4 Issues with configuring ASDF . 65

13.4.1 “How can I customize where fasl files are stored?” 65

iv

13.4.2 “How can I wholly disable the compiler output cache?” . . 66
13.5 Issues with using and extending ASDF to define systems 66

13.5.1 “How can I cater for unit-testing in my system?” 66
13.5.2 “How can I cater for documentation generation in my

system?” . 66
13.5.3 “How can I maintain non-Lisp (e.g. C) source files?” 66
13.5.4 “I want to put my module’s files at the top level. How do I

do this?” . 67
13.5.5 How do I create a system definition where all the source files

have a .cl extension? . 68
13.5.6 How do I mark a source file to be loaded only and not

compiled? . 69
13.5.7 How do I work with readtables? . 69

13.5.7.1 How should my system use a readtable exported by
another system? . 70

13.5.7.2 How should my library make a readtable available to
other systems? . 70

13.6 ASDF development FAQs . 70
13.6.1 How do run the tests interactively in a REPL? 70

Ongoing Work . 72

Bibliography . 73

Concept Index . 75

Function and Class Index . 76

Variable Index . 77

Chapter 1: Introduction 1

1 Introduction

ASDF is Another System Definition Facility: a tool for specifying how systems of Common
Lisp software are made up of components (sub-systems and files), and how to operate on
these components in the right order so that they can be compiled, loaded, tested, etc. If
you are new to ASDF, see Chapter 2 [the quick start guide], page 2.

ASDF presents three faces: one for users of Common Lisp software who want to reuse
other people’s code, one for writers of Common Lisp software who want to specify how to
build their systems, and one for implementers of Common Lisp extensions who want to
extend the build system. For more specifics, see Chapter 5 [Loading a system], page 9, to
learn how to use ASDF to load a system. See Chapter 6 [Defining systems with defsystem],
page 10, to learn how to define a system of your own. See Chapter 7 [The object model of
ASDF], page 20, for a description of the ASDF internals and how to extend ASDF.

Note that ASDF is not a tool for library and system installation; it plays a role like
make or ant, not like a package manager. In particular, ASDF should not to be confused
with ASDF-Install, which attempts to find and download ASDF systems for you. Despite
the name, ASDF-Install is not part of ASDF, but a separate piece of software. ASDF-
Install is also unmaintained and obsolete. We recommend you use Quicklisp (http://
www.quicklisp.org) instead, a Common Lisp package manager which works well and is
being actively maintained. If you want to download software from version control instead of
tarballs, so you may more easily modify it, we recommend clbuild (http://common-lisp.
net/project/clbuild/). We recommend ~/common-lisp/ as a place into which to install
Common Lisp software; starting with ASDF 3.1.2, it is included in the default source-
registry configuration.

http://www.quicklisp.org
http://www.quicklisp.org
http://common-lisp.net/project/clbuild/
http://common-lisp.net/project/clbuild/

Chapter 2: Quick start summary 2

2 Quick start summary

• To load an ASDF system:

• Load ASDF itself into your Lisp image, either through (require "asdf")

(if it’s supplied by your lisp implementation) or else through (load

"/path/to/asdf.lisp"). For more details, Chapter 3 [Loading ASDF], page 3.

• Make sure ASDF can find system definitions through proper source-registry
configuration. For more details, See Section 4.1 [Configuring ASDF to find
your systems], page 6. The simplest way is simply to put all your lisp
code in subdirectories of ~/common-lisp/ (starting with ASDF 3.1.2), or
~/.local/share/common-lisp/source/ (for ASDF 2 and later, or if you want
to keep source in a hidden directory). Such code will automatically be found.

• Load a system with (asdf:load-system :system). See Chapter 5 [Using ASDF],
page 9.

• To make your own ASDF system:

• As above, load and configure ASDF.

• Make a new directory for your system, my-system/ in a location where ASDF can
find it (see Section 4.1 [Configuring ASDF to find your systems], page 6). All else
being equal, the easiest location is probably ~/common-lisp/my-system/.

• Create an ASDF system definition listing the dependencies of your system, its
components, and their interdependencies, and put it in my-system.asd. This file
must have the same name as your system. See Chapter 6 [Defining systems with
defsystem], page 10.

• Use (asdf:load-system :my-system) to make sure it’s all working properly. See
Chapter 5 [Using ASDF], page 9.

Chapter 3: Loading ASDF 3

3 Loading ASDF

3.1 Loading a pre-installed ASDF

Most recent Lisp implementations include a copy of ASDF 3, or at least ASDF 2. You can
usually load this copy using Common Lisp’s require function.1

(require "asdf")

As of the writing of this manual, the following implementations provide ASDF 3 this
way: ABCL, Allegro CL, Clozure CL, CMUCL, ECL, GNU CLISP, MKCL, SBCL. The
following implementations only provide ASDF 2: LispWorks, mocl, XCL. The following
implementations don’t provide ASDF: Corman CL, GCL, Genera, MCL, SCL. The latter
implementations are not actively maintained; if some of them are ever released again, they
probably will include ASDF 3.

If the implementation you are using doesn’t provide ASDF 2 or ASDF 3, see see Chapter 3
[Loading ASDF from source], page 3 below. If that implementation is still actively main-
tained, you may also send a bug report to your Lisp vendor and complain about their failing
to provide ASDF.

3.2 Checking whether ASDF is loaded

To check whether ASDF is properly loaded in your current Lisp image, you can run this
form:

(asdf:asdf-version)

If it returns a string, that is the version of ASDF that is currently installed.

If it raises an error, then either ASDF is not loaded, or you are using a very old version
of ASDF, and need to install ASDF 3.

You can check whether an old version is loaded by checking if the ASDF package is
present. The form below will allow you to programmatically determine whether a recent
version is loaded, an old version is loaded, or none at all:

(when (find-package :asdf)

(let ((ver (symbol-value

(or (find-symbol (string :*asdf-version*) :asdf)

(find-symbol (string :*asdf-revision*) :asdf)))))

(etypecase ver

(string ver)

(cons (with-output-to-string (s)

(loop for (n . m) on ver

do (princ n s)

(when m (princ "." s)))))

(null "1.0"))))

If it returns nil then ASDF is not installed. Otherwise it should return a string. If it
returns "1.0", then it can actually be any version before 1.77 or so, or some buggy variant
of 1.x.

1 NB: all implementations except GNU CLISP also accept (require "ASDF"), (require ’asdf) and
(require :asdf). For portability’s sake, you should use (require "asdf").

Chapter 3: Loading ASDF 4

If you are experiencing problems with ASDF, please try upgrading to the latest released
version, using the method below, before you contact us and raise an issue.

3.3 Upgrading ASDF

If you want to upgrade to a more recent ASDF version, you need to install and configure
your ASDF just like any other system (see Section 4.1 [Configuring ASDF to find your
systems], page 6).

If your implementation provides ASDF 3 or later, you only need to (require "asdf"):
ASDF will automatically look whether an updated version of itself is available amongst the
regularly configured systems, before it compiles anything else.

3.3.1 Upgrading your implementation’s ASDF

Most implementations provide a recent ASDF 3 in their latest release. If yours doesn’t, we
recommend upgrading your implementation. If the latest version of your implementation
still doesn’t provide ASDF, or provides an old version, we recommend installing a recent
ASDF so your implementation provides it, as explained below. If all fails, we recommend
you load ASDF from source see Chapter 3 [Loading ASDF from source], page 3.

The ASDF source repository contains a script bin/install-asdf-as-module that can
help you upgrade your implementation’s ASDF. It works on Allegro CL, Clozure CL, CMU
CL, ECL, GNU CLISP, LispWorks, MKCL, SBCL, SCL, XCL. That’s all known implemen-
tations except ABCL, Corman CL, GCL, Genera, MCL, MOCL. Happily, ABCL is usually
pretty up to date and shouldn’t need that script. GCL would be supported, except that
so far is still lacking usable support for require. Corman CL, Genera, MCL are obsolete
anyway. MOCL is under development. On an old version of an implementation that does
not provide ASDF, you may have to load ASDF 3 from source before you load that script.

The script relies on cl-launch 4 for command-line invocation, which may depend on
ASDF being checked out in ~/common-lisp/asdf/ (which we recommend anyway) if your
implementation doesn’t even have an ASDF 2. If you don’t have cl-launch, you can instead
(load "bin/install-asdf-as-module") from your implementation’s REPL after loading
ASDF from source.

Finally, if your implementation only provides ASDF 2, and you can’t or won’t upgrade
it or override its ASDF module, you may simply configure ASDF to find a proper upgrade;
however, to avoid issues with a self-upgrade in mid-build, you must make sure to upgrade
ASDF immediately after requiring the builtin ASDF 2:

(require "asdf")

;; <--- insert programmatic configuration here if needed

(asdf:load-system :asdf)

3.3.2 Issues with upgrading ASDF

Note that there are some limitations to upgrading ASDF:

• Previously loaded ASDF extensions become invalid, and will need to be reloaded. Ex-
amples include CFFI-Grovel, hacks used by ironclad, etc. Since it isn’t possible to
automatically detect what extensions need to be invalidated, ASDF will invalidate all

Chapter 3: Loading ASDF 5

previously loaded systems when it is loaded on top of a forward-incompatible ASDF
version.2

Starting with ASDF 3 (2.27 or later), this self-upgrade will be automatically attempted
as the first step to any system operation, to avoid any possibility of a catastrophic
attempt to self-upgrade in mid-build.

• For this and many other reasons, you should load, configure and upgrade ASDF as one
of the very first things done by your build and startup scripts. It is safer if you upgrade
ASDF and its extensions as a special step at the very beginning of whatever script you
are running, before you start using ASDF to load anything else.

• Until all implementations provide ASDF 3 or later, it is unsafe to upgrade ASDF as
part of loading a system that depends on a more recent version of ASDF, since the new
one might shadow the old one while the old one is running, and the running old one
will be confused when extensions are loaded into the new one. In the meantime, we rec-
ommend that your systems should not specify :depends-on (:asdf), or :depends-on
((:version :asdf "3.0.1")), but instead that they check that a recent enough ASDF
is installed, with such code as:

(unless (or #+asdf2 (asdf:version-satisfies

(asdf:asdf-version) *required-asdf-version*))

(error "FOO requires ASDF ~A or later." *required-asdf-version*))

• Until all implementations provide ASDF 3 or later, it is unsafe for a system to tran-
sitively depend on ASDF and not directly depend on ASDF; if any of the system you
use either depends-on asdf, system-depends-on asdf, or transitively does, you should
also do as well.

3.4 Loading ASDF from source

If your implementation doesn’t include ASDF, if for some reason the upgrade somehow fails,
does not or cannot apply to your case, you will have to install the file asdf.lisp somewhere
and load it with:

(load "/path/to/your/installed/asdf.lisp")

The single file asdf.lisp is all you normally need to use ASDF.

You can extract this file from latest release tarball on the ASDF website. If you are
daring and willing to report bugs, you can get the latest and greatest version of ASDF from
its git repository. See Chapter 12 [Getting the latest version], page 59.

For maximum convenience you might want to have ASDF loaded whenever you start
your Lisp implementation, for example by loading it from the startup script or dumping a
custom core — check your Lisp implementation’s manual for details.

2 Forward incompatibility can be determined using the variable asdf/upgrade::*oldest-forward-

compatible-asdf-version*, which is 2.33 at the time of this writing.

http://common-lisp.net/project/asdf/

Chapter 4: Configuring ASDF 6

4 Configuring ASDF

For standard use cases, ASDF should work pretty much out of the box. We recommend
you skim the sections on configuring ASDF to find your systems and choose the method of
installing Lisp software that works best for you. Then skip directly to See Chapter 5 [Using
ASDF], page 9. That will probably be enough. You are unlikely to have to worry about the
way ASDF stores object files, and resetting the ASDF configuration is usually only needed
in corner cases.

4.1 Configuring ASDF to find your systems

In order to compile and load your systems, ASDF must be configured to find the .asd files
that contain system definitions.

There are a number of different techniques for setting yourself up with ASDF, starting
from easiest to the most complex:

• Put all of your systems in one of the standard locations, subdirectories of

• ~/common-lisp/ or

• ~/.local/share/common-lisp/source/.

If you install software there, you don’t need further configuration.1

• If you’re using some tool to install software (e.g. Quicklisp), the authors of that tool
should already have configured ASDF.

• If you have more specific desires about how to lay out your software on disk, the
preferred way to configure where ASDF finds your systems is the source-registry

facility, fully described in its own chapter of this manual. See Chapter 8 [Controlling
where ASDF searches for systems], page 34. Here is a quick recipe for getting started:

The simplest way to add a path to your search path, say /home/luser/.asd-link-

farm/ is to create the directory ~/.config/common-lisp/source-registry.conf.d/

and there create a file with any name of your choice, and with the type conf2, for
instance 42-asd-link-farm.conf, containing the line:

(:directory "/home/luser/.asd-link-farm/")

If you want all the subdirectories under /home/luser/lisp/ to be recursively scanned
for .asd files, instead use:

(:tree "/home/luser/lisp/")

ASDF will automatically read your configuration the first time you try to find a system.
If necessary, you can reset the source-registry configuration with:

(asdf:clear-source-registry)

1 ~/common-lisp/ is only included in the default configuration starting with ASDF 3.1.2 or later.
2 By requiring the .conf extension, and ignoring other files, ASDF allows you to have disabled files, editor

backups, etc. in the same directory with your active configuration files.

ASDF will also ignore files whose names start with a . character.

It is customary to start the filename with two digits, to control the sorting of the conf files in the source
registry directory, and thus the order in which the directories will be scanned.

Chapter 4: Configuring ASDF 7

• In earlier versions of ASDF, the system source registry was configured using a global
variable, asdf:*central-registry*. For more details about this, see the following
section, Section 4.2 [Configuring ASDF to find your systems — old style], page 7.
Unless you need to understand this, skip directly to Section 4.3 [Configuring where
ASDF stores object files], page 8.

Note that your Operating System distribution or your system administrator may already
have configured system-managed libraries for you.

4.2 Configuring ASDF to find your systems — old style

The old way to configure ASDF to find your systems is by pushing directory pathnames
onto the variable asdf:*central-registry*.

You must configure this variable between the time you load ASDF and the time you
first try to use it. Loading and configuring ASDF presumably happen as part of some
initialization script that builds or starts your Common Lisp software system. (For instance,
some SBCL users used to put it in their ~/.sbclrc.)

The asdf:*central-registry* is empty by default in ASDF 2 or ASDF 3, but is still
supported for compatibility with ASDF 1. When used, it takes precedence over the above
source-registry.3

For example, let’s say you want ASDF to find the .asd file /home/me/src/foo/foo.asd.
In your lisp initialization file, you could have the following:

(require "asdf")

(push "/home/me/src/foo/" asdf:*central-registry*)

Note the trailing slash: when searching for a system, ASDF will evaluate each entry
of the central registry and coerce the result to a pathname.4 The trailing directory name
separator is necessary to tell Lisp that you’re discussing a directory rather than a file. If
you leave it out, ASDF is likely to look in /home/me/src/ instead of /home/me/src/foo/
as you intended, and fail to find your system definition.

Typically there are a lot of .asd files, and a common idiom was to put symbolic links
to all of one’s .asd files in a common directory and push that directory (the “link farm”)
onto asdf:*central-registry*, instead of pushing each individual system directory.

ASDF knows to follow symlinks to the actual location of the systems.5

3 It is possible to further customize the system definition file search. That’s considered advanced use, and
covered later: search forward for *system-definition-search-functions*. See Chapter 6 [Defining
systems with defsystem], page 10.

4 ASDF will indeed call eval on each entry. It will skip entries that evaluate to nil.

Strings and pathname objects are self-evaluating, in which case the eval step does nothing; but you may
push arbitrary s-expressions onto the central registry. These s-expressions may be evaluated to compute
context-dependent entries, e.g. things that depend on the value of shell variables or the identity of the
user.

The variable asdf:*central-registry* is thus a list of “system directory designators”. A system
directory designator is a form which will be evaluated whenever a system is to be found, and must
evaluate to a directory to look in (or NIL). By “directory”, we mean “designator for a pathname with a
non-empty DIRECTORY component”.

5 On Windows, you can use Windows shortcuts instead of POSIX symlinks. if you try aliases under
MacOS, we are curious to hear about your experience.

Chapter 4: Configuring ASDF 8

For example, if #p"/home/me/cl/systems/" is an element of *central-registry*, you
could set up the system foo as follows:

$ cd /home/me/cl/systems/

$ ln -s ~/src/foo/foo.asd .

This old style for configuring ASDF is not recommended for new users, but it is supported
for old users, and for users who want to programmatically control what directories are added
to the ASDF search path.

4.3 Configuring where ASDF stores object files

ASDF lets you configure where object files will be stored. Sensible defaults are provided
and you shouldn’t normally have to worry about it.

This allows the same source code repository to be shared between several versions of
several Common Lisp implementations, between several users using different compilation
options, with users who lack write privileges on shared source directories, etc. This also
keeps source directories from being cluttered with object/fasl files.

Starting with ASDF 2, the asdf-output-translations facility was added to ASDF
itself. This facility controls where object files will be stored. This facility is fully described
in a chapter of this manual, Chapter 9 [Controlling where ASDF saves compiled files],
page 43.

Note that before ASDF 2, other ASDF add-ons offered the same functionality, each in
subtly different and incompatible ways: ASDF-Binary-Locations, cl-launch, common-lisp-
controller. ASDF-Binary-Locations is now not needed anymore and should not be used.
cl-launch 3.000 and common-lisp-controller 7.2 have been updated to delegate object file
placement to ASDF.

4.4 Resetting the ASDF configuration

When you dump and restore an image, or when you tweak your configuration, you may
want to reset the ASDF configuration. For that you may use the following function:

[Function]clear-configuration
Undoes any ASDF configuration regarding source-registry or output-translations.

This function is pushed onto the uiop:*image-dump-hook* by default, which
means that if you save an image using uiop:dump-image, or via asdf:image-op and
asdf:program-op, it will be automatically called to clear your configuration. If for
some reason you prefer to call your implementation’s underlying functionality, be
sure to call clear-configuration manually, or push it into your implementation’s
equivalent of uiop:*image-dump-hook*, e.g. sb-ext:*save-hooks* on SBCL, or
ext:*before-save-initializations* on CMUCL and SCL, etc.

Chapter 5: Using ASDF 9

5 Using ASDF

5.1 Loading a system

The system foo is loaded (and compiled, if necessary) by evaluating the following Lisp form:

(asdf:load-system :foo)

On some implementations (namely recent versions of ABCL, Clozure CL, CMUCL, ECL,
GNU CLISP, MKCL and SBCL), ASDF hooks into the CL:REQUIRE facility and you can
just use:

(require :foo)

In older versions of ASDF, you needed to use (asdf:oos ’asdf:load-op :foo). If your
ASDF is too old to provide asdf:load-system though we recommend that you upgrade to
ASDF 3. See Chapter 3 [Loading ASDF from source], page 3.

Note the name of a system is specified as a string or a symbol. If a symbol (including
a keyword), its name is taken and lowercased. The name must be a suitable value for the
:name initarg to make-pathname in whatever filesystem the system is to be found.

The lower-casing-symbols behaviour is unconventional, but was selected after some con-
sideration. The type of systems we want to support either have lowercase as customary
case (Unix, Mac, Windows) or silently convert lowercase to uppercase (lpns).

5.2 Other Operations

ASDF provides three commands for the most common system operations: load-system,
compile-system, and test-system. It also provides require-system, a version of
load-system that skips trying to update systems that are already loaded.

Because ASDF is an extensible system for defining operations on components, it also
provides a generic function operate (which is usually abbreviated by oos, which stands for
operate-on-system). You’ll use oos whenever you want to do something beyond compiling,
loading and testing.

Output from ASDF and ASDF extensions are sent to the CL stream
standard-output, so rebinding that stream around calls to asdf:operate

should redirect all output from ASDF operations.

For advanced users, note that require-system calls load-system with keyword argu-
ments :force-not (already-loaded-systems). already-loaded-systems returns a list
of the names of loaded systems. load-system applies operate with the operation from
load-system-operation (which by default is load-op), the system, and any provided
keyword arguments.

5.3 Moving on

That’s all you need to know to use ASDF to load systems written by others. The rest of this
manual deals with writing system definitions for Common Lisp software you write yourself,
including how to extend ASDF to define new operation and component types.

Chapter 6: Defining systems with defsystem 10

6 Defining systems with defsystem

This chapter describes how to use ASDF to define systems and develop software.

6.1 The defsystem form

This section begins with an example of a system definition, then gives the full grammar of
defsystem.

Let’s look at a simple system. This is a complete file that should be saved as
hello-lisp.asd (in order that ASDF can find it when ordered to operate on the system
named "hello-lisp").

(in-package :asdf-user)

(defsystem "hello-lisp"

:description "hello-lisp: a sample Lisp system."

:version "0.0.1"

:author "Joe User <joe@example.com>"

:licence "Public Domain"

:components ((:file "packages")

(:file "macros" :depends-on ("packages"))

(:file "hello" :depends-on ("macros"))))

Some notes about this example:

• The file starts with an in-package form for package asdf-user. Quick summary: just
do this, because it helps make interactive development of defsystem forms behave in
the same was as when these forms are loaded by ASDF. If that’s enough for you, skip
the rest of this item. Otherwise read on for the gory details.

If your file is loaded by ASDF 3, it will be loaded into the asdf-user package. The
in-package form will ensure that the system definition is read the same as within
ASDF when you load it interactively with cl:load. However, we recommend that
you load .asd files through function asdf::load-asd rather than through cl:load,
in which case this form is unnecessary. Recent versions of SLIME (2013-02 and later)
know to do that.

• You can always rely on symbols from both package asdf and common-lisp being avail-
able in .asd files – most importantly including defsystem.

• The defsystem form defines a system named hello-lisp that contains three source
files: packages, macros and hello.

• The file macros depends on packages (presumably because the package it’s in is de-
fined in packages), and the file hello depends on macros (and hence, transitively on
packages). This means that ASDF will compile and load packages and macros before
starting the compilation of file hello.

• System source files should be located in the same directory as the .asd file with the
system definition.

• Make sure you know how the :version numbers will be parsed! Only period-separated
non-negative integers are accepted. See below Version specifiers in Section 6.3 [The
defsystem grammar], page 11.

Chapter 6: Defining systems with defsystem 11

6.2 A more involved example

Let’s illustrate some more involved uses of defsystem via a slightly convoluted example:

(in-package :asdf-user)

(defsystem "foo"

:version "1.0.0"

:components ((:module "mod"

:components ((:file "bar")

(:file"baz")

(:file "quux"))

:perform (compile-op :after (op c)

(do-something c))

:explain (compile-op :after (op c)

(explain-something c)))

(:file "blah")))

The :module component named "mod" is a collection of three files, which will be located
in a subdirectory of the main code directory named mod (this location can be overridden; see
the discussion of the :pathname option in Section 6.3 [The defsystem grammar], page 11).

The method-form tokens provide a shorthand for defining methods on particular com-
ponents. This part

:perform (compile-op :after (op c)

(do-something c))

:explain (compile-op :after (op c)

(explain-something c))

has the effect of

(defmethod perform :after ((op compile-op) (c (eql ...)))

(do-something c))

(defmethod explain :after ((op compile-op) (c (eql ...)))

(explain-something c))

where ... is the component in question. In this case ... would expand to something
like

(find-component "foo" "mod")

For more details on the syntax of such forms, see Section 6.3 [The defsystem grammar],
page 11. For more details on what these methods do, see Section 7.1 [Operations], page 20
in Chapter 7 [The object model of ASDF], page 20.

6.3 The defsystem grammar

system-definition := (defsystem system-designator system-option*)

system-option := :defsystem-depends-on system-list

| :weakly-depends-on system-list

| :class class-name (see discussion below)

| module-option

| option

Chapter 6: Defining systems with defsystem 12

module-option := :components component-list

| :serial [t | nil]

option :=

| :pathname pathname-specifier

| :default-component-class class-name

| :perform method-form

| :explain method-form

| :output-files method-form

| :operation-done-p method-form

| :if-feature feature-expression

| :depends-on (dependency-def*)

| :in-order-to (dependency+)

system-list := (simple-component-name*)

component-list := (component-def*)

component-def := (component-type simple-component-name option*)

component-type := :module | :file | :static-file | other-component-type

other-component-type := symbol-by-name

(see Section 6.3 [Component types], page 11)

This is used in :depends-on, as opposed to ‘‘dependency,’’

which is used in :in-order-to

dependency-def := simple-component-name

| (:feature feature-expression dependency-def)

| (:version simple-component-name version-specifier)

| (:require module-name)

‘‘dependency’’ is used in :in-order-to, as opposed to

‘‘dependency-def’’

dependency := (dependent-op requirement+)

requirement := (required-op required-component+)

dependent-op := operation-name

required-op := operation-name

simple-component-name := string

| symbol

pathname-specifier := pathname | string | symbol

method-form := (operation-name qual lambda-list &rest

Chapter 6: Defining systems with defsystem 13

body)

qual := method qualifier

component-dep-fail-option := :fail | :try-next | :ignore

feature-expression := keyword

| (:and feature-expression*)

| (:or feature-expression*)

| (:not feature-expression)

6.3.1 Component names

Component names (simple-component-name) may be either strings or symbols.

6.3.2 Component types

Component type names, even if expressed as keywords, will be looked up by name in the
current package and in the asdf package, if not found in the current package. So a compo-
nent type my-component-type, in the current package my-system-asd can be specified as
:my-component-type, or my-component-type.

system and its subclasses are not allowed as component types for such children compo-
nents.

6.3.3 System class names

A system class name will be looked up in the same way as a Component type (see above),
except that only system and its subclasses are allowed. Typically, one will not need to
specify a system class name, unless using a non-standard system class defined in some
ASDF extension, typically loaded through DEFSYSTEM-DEPENDS-ON, see below. For such
class names in the ASDF package, we recommend that the :class option be specified using
a keyword symbol, such as

:class :MY-NEW-SYSTEM-SUBCLASS

This practice will ensure that package name conflicts are avoided. Otherwise, the symbol
MY-NEW-SYSTEM-SUBCLASS will be read into the current package before it has been exported
from the ASDF extension loaded by :defsystem-depends-on, causing a name conflict in
the current package.

6.3.4 Defsystem depends on

The :defsystem-depends-on option to defsystem allows the programmer to specify an-
other ASDF-defined system or set of systems that must be loaded before the system defi-
nition is processed. Typically this is used to load an ASDF extension that is used in the
system definition.

6.3.5 Weakly depends on

We do NOT recommend you use this feature. If you are tempted to write a system foo
that weakly-depends-on a system bar, we recommend that you should instead write system
foo in a parametric way, and offer some special variable and/or some hook to specialize its
behavior; then you should write a system foo+bar that does the hooking of things together.

Chapter 6: Defining systems with defsystem 14

The (deprecated) :weakly-depends-on option to defsystem allows the programmer to
specify another ASDF-defined system or set of systems that ASDF should try to load, but
need not load in order to be successful. Typically this is used if there are a number of
systems that, if present, could provide additional functionality, but which are not necessary
for basic function.

Currently, although it is specified to be an option only to defsystem, this option is
accepted at any component, but it probably only makes sense at the defsystem level.
Programmers are cautioned not to use this component option except at the defsystem

level, as this anomalous behavior may be removed without warning.

6.3.6 Pathname specifiers

A pathname specifier (pathname-specifier) may be a pathname, a string or a symbol.
When no pathname specifier is given for a component, which is the usual case, the compo-
nent name itself is used.

If a string is given, which is the usual case, the string will be interpreted as a Unix-
style pathname where / characters will be interpreted as directory separators. Usually,
Unix-style relative pathnames are used (i.e. not starting with /, as opposed to absolute
pathnames); they are relative to the path of the parent component. Finally, depending on
the component-type, the pathname may be interpreted as either a file or a directory, and
if it’s a file, a file type may be added corresponding to the component-type, or else it will
be extracted from the string itself (if applicable).

For instance, the component-type :module wants a directory pathname, and so a
string "foo/bar" will be interpreted as the pathname #p"foo/bar/". On the other hand,
the component-type :file wants a file of type lisp, and so a string "foo/bar" will
be interpreted as the pathname #p"foo/bar.lisp", and a string "foo/bar.quux" will
be interpreted as the pathname #p"foo/bar.quux.lisp". Finally, the component-type

:static-file wants a file without specifying a type, and so a string "foo/bar" will be in-
terpreted as the pathname #p"foo/bar", and a string "foo/bar.quux" will be interpreted
as the pathname #p"foo/bar.quux".

ASDF interprets the string ".." as the pathname directory component word :back,
which when merged, goes back one level in the directory hierarchy.

If a symbol is given, it will be translated into a string, and downcased in the process. The
downcasing of symbols is unconventional, but was selected after some consideration. Obser-
vations suggest that the type of systems we want to support either have lowercase as cus-
tomary case (Unix, Mac, windows) or silently convert lowercase to uppercase (lpns), so this
makes more sense than attempting to use :case :common as argument to make-pathname,
which is reported not to work on some implementations.

Pathname objects may be given to override the path for a component. Such objects
are typically specified using reader macros such as #p or #.(make-pathname ...). Note
however, that #p... is a shorthand for #.(parse-namestring ...) and that the behav-
ior of parse-namestring is completely non-portable, unless you are using Common Lisp
logical-pathnames, which themselves involve other non-portable behavior (see Section 6.3
[Using logical pathnames], page 11, below). Pathnames made with #.(make-pathname

...) can usually be done more easily with the string syntax above. The only case that
you really need a pathname object is to override the component-type default file type for

Chapter 6: Defining systems with defsystem 15

a given component. Therefore, pathname objects should only rarely be used. Unhappily,
ASDF 1 used not to properly support parsing component names as strings specifying paths
with directories, and the cumbersome #.(make-pathname ...) syntax had to be used. An
alternative to #. read-time evaluation is to use (eval ‘(defsystem ... ,pathname ...)).

Note that when specifying pathname objects, ASDF does not do any special interpreta-
tion of the pathname influenced by the component type, unlike the procedure for pathname-
specifying strings. On the one hand, you have to be careful to provide a pathname that
correctly fulfills whatever constraints are required from that component type (e.g. naming
a directory or a file with appropriate type); on the other hand, you can circumvent the file
type that would otherwise be forced upon you if you were specifying a string.

6.3.7 Version specifiers

Version specifiers are strings to be parsed as period-separated lists of integers. I.e., in the
example, "0.2.1" is to be interpreted, roughly speaking, as (0 2 1). In particular, version
"0.2.1" is interpreted the same as "0.0002.1", though the latter is not canonical and may
lead to a warning being issued. Also, "1.3" and "1.4" are both strictly uiop:version< to
"1.30", quite unlike what would have happened had the version strings been interpreted
as decimal fractions.

Instead of a string representing the version, the :version argument can be an expression
that is resolved to such a string using the following trivial domain-specific language: in
addition to being a literal string, it can be an expression of the form (:read-file-form

<pathname-or-string> :at <access-at-specifier>), which will be resolved by reading
a form in the specified pathname (read as a subpathname of the current system if relative
or a unix-namestring). You may use a uiop:access-at specifier with the (optional) :at
keyword, by default the specifier is 0, meaning the first form is returned; subforms can also
be specified, with e.g. (1 2 2) specifying “the third subform (index 2) of the third subform
(index 2) of the second form (index 1)” in the file (mind the off-by-one error in the English
language).

System definers are encouraged to use version identifiers of the form x.y.z for major
version, minor version and patch level, where significant API incompatibilities are signaled
by an increased major number.

See Section 7.2.1 [Common attributes of components], page 28.

6.3.8 Require

Use the implementation’s own require to load the module-name.

6.3.9 Using logical pathnames

We do not generally recommend the use of logical pathnames, especially not so to newcomers
to Common Lisp. However, we do support the use of logical pathnames by old timers, when
such is their preference.

To use logical pathnames, you will have to provide a pathname object
as a :pathname specifier to components that use it, using such syntax as
#p"LOGICAL-HOST:absolute;path;to;component.lisp".

You only have to specify such logical pathname for your system or some top-level com-
ponent. Sub-components’ relative pathnames, specified using the string syntax for names,

Chapter 6: Defining systems with defsystem 16

will be properly merged with the pathnames of their parents. The specification of a log-
ical pathname host however is not otherwise directly supported in the ASDF syntax for
pathname specifiers as strings.

The asdf-output-translation layer will avoid trying to resolve and translate logical
pathnames. The advantage of this is that you can define yourself what translations you
want to use with the logical pathname facility. The disadvantage is that if you do not
define such translations, any system that uses logical pathnames will behave differently
under asdf-output-translations than other systems you use.

If you wish to use logical pathnames you will have to configure the translations yourself
before they may be used. ASDF currently provides no specific support for defining logical
pathname translations.

Note that the reasons we do not recommend logical pathnames are that (1) there is no
portable way to set up logical pathnames before they are used, (2) logical pathnames are
limited to only portably use a single character case, digits and hyphens. While you can
solve the first issue on your own, describing how to do it on each of fifteen implementations
supported by ASDF is more than we can document. As for the second issue, mind that the
limitation is notably enforced on SBCL, and that you therefore can’t portably violate the
limitations but must instead define some encoding of your own and add individual mappings
to name physical pathnames that do not fit the restrictions. This can notably be a problem
when your Lisp files are part of a larger project in which it is common to name files or
directories in a way that includes the version numbers of supported protocols, or in which
files are shared with software written in different programming languages where conventions
include the use of underscores, dots or CamelCase in pathnames.

6.3.10 Serial dependencies

If the :serial t option is specified for a module, ASDF will add dependencies for each child
component, on all the children textually preceding it. This is done as if by :depends-on.

:serial t

:components ((:file "a") (:file "b") (:file "c"))

is equivalent to

:components ((:file "a")

(:file "b" :depends-on ("a"))

(:file "c" :depends-on ("a" "b")))

6.3.11 Source location (:pathname)

The :pathname option is optional in all cases for systems defined via defsystem, and
generally is unnecessary. In the simple case, source files will be found in the same directory
as the system or, in the case of modules, in a subdirectory with the same name as the
module.

More specifically, ASDF follows a hairy set of rules that are designed so that

1. find-system will load a system from disk and have its pathname default to the right
place.

2. This pathname information will not be overwritten with *default-pathname-

defaults* (which could be somewhere else altogether) if the user loads up the .asd

file into his editor and interactively re-evaluates that form.

Chapter 6: Defining systems with defsystem 17

If a system is being loaded for the first time, its top-level pathname will be set to:

• The host/device/directory parts of *load-truename*, if it is bound.

• *default-pathname-defaults*, otherwise.

If a system is being redefined, the top-level pathname will be

• changed, if explicitly supplied or obtained from *load-truename* (so that an updated
source location is reflected in the system definition)

• changed if it had previously been set from *default-pathname-defaults*

• left as before, if it had previously been set from *load-truename* and
load-truename is currently unbound (so that a developer can evaluate a defsystem

form from within an editor without clobbering its source location)

6.3.12 if-feature option

This option allows you to specify a feature expression to be evaluated as if by #+ to con-
ditionally include a component in your build. If the expression is false, the component
is dropped as well as any dependency pointing to it. As compared to using #+ which is
expanded at read-time, this allows you to have an object in your component hierarchy that
can be used for manipulations beside building your project, and that is accessible to outside
code that wishes to reason about system structure.

Programmers should be careful to consider when the :if-feature is evaluated. Recall
that ASDF first computes a build plan, and then executes that plan. ASDF will check to
see whether or not a feature is present at planning time, not during the build. It follows
that one cannot use :if-feature to check features that are set during the course of the
build. It can only be used to check the state of features before any build operations have
been performed.

This option was added in ASDF 3. For more information, See [required-features],
page 29.

6.3.13 if-component-dep-fails option

This option was removed in ASDF 3. Its semantics was limited in purpose and dubious to
explain, and its implementation was breaking a hole into the ASDF object model. Please
use the if-feature option instead.

6.3.14 feature requirement

This requirement was removed in ASDF 3.1. Please do not use it. In most cases,
:if-feature (see [if-feature-option], page 17) will provide an adequate substitute.

The feature requirement used to ensure that a chain of component dependencies would
fail when a key feature was absent. Used in conjunction with :if-component-dep-fails

this provided a roundabout way to express conditional compilation.

6.4 Other code in .asd files

Files containing defsystem forms are regular Lisp files that are executed by load. Conse-
quently, you can put whatever Lisp code you like into these files. However, it is recommended
to keep such forms to a minimal, and to instead define defsystem extensions that you use
with :defsystem-depends-on.

Chapter 6: Defining systems with defsystem 18

If however, you might insist on including code in the .asd file itself, e.g., to examine and
adjust the compile-time environment, possibly adding appropriate features to *features*.
If so, here are some conventions we recommend you follow, so that users can control certain
details of execution of the Lisp in .asd files:

• Any informative output (other than warnings and errors, which are the condition sys-
tem’s to dispose of) should be sent to the standard CL stream *standard-output*, so
that users can easily control the disposition of output from ASDF operations.

6.5 The package-inferred-system extension

Starting with release 3.1.2, ASDF supports a one-package-per-file style of programming,
whereby each file is its own system, and dependencies are deduced from the defpackage

form (or its variant uiop:define-package).

In this style, packages refer to a system with the same name (downcased); and if
a system is defined with :class package-inferred-system, then system names that
start with that name (using the slash / separator) refer to files under the filesystem
hierarchy where the system is defined. For instance, if system my-lib is defined in
/foo/bar/my-lib/my-lib.asd, then system my-lib/src/utility will be found in file
/foo/bar/my-lib/src/utility.lisp.

This style was made popular by faslpath and quick-build before, and at the cost of a
stricter package discipline, seems to make for more maintainable code. It is used by ASDF
itself (starting with ASDF 3) and by lisp-interface-library.

To use this style, choose a toplevel system name, e.g. my-lib, and create a file
my-lib.asd with the :class :package-inferred-system option in its defsystem. For
instance:

#-asdf (error "my-lib requires ASDF 3")

(defsystem my-lib

:class :package-inferred-system

:defsystem-depends-on (:asdf-package-system)

:depends-on (:lil/interface/all

:lil/pure/all

:lil/stateful/all

:lil/transform/all)

:in-order-to ((test-op (load-op :lil/test/all)))

:perform (test-op (o c) (symbol-call :lil/test/all :test-suite)))

(defsystem :lil/test :depends-on (:lil/test/all))

(register-system-packages :lil/interface/all ’(:interface))

(register-system-packages :lil/pure/all ’(:pure))

(register-system-packages :lil/stateful/all ’(:stateful))

(register-system-packages :lil/transform/classy ’(:classy))

(register-system-packages :lil/transform/posh ’(:posh))

(register-system-packages :lil/test/all ’(:lil/test))

(register-system-packages

Chapter 6: Defining systems with defsystem 19

:closer-mop

’(:c2mop :closer-common-lisp :c2cl :closer-common-lisp-user :c2cl-user))

In the code above, the :defsystem-depends-on (:asdf-package-system) is for com-
patibility with older versions of ASDF 3 (ASDF 2 is not supported), and requires the
asdf-package-system library to be present (it is implicitly provided by ASDF starting
with release 3.1.2, which can be detected with the feature :asdf3.1).

The function register-system-packages has to be called to register packages used or
provided by your system and its components where the name of the system that provides
the package is not the downcase of the package name.

Then, file interface/order.lisp under the lil hierarchy, that defines abstract inter-
faces for order comparisons, starts with the following form, dependencies being trivially
computed from the :use and :mix clauses:

(uiop:define-package :lil/interface/order

(:use :closer-common-lisp

:lil/interface/definition

:lil/interface/base

:lil/interface/eq :lil/interface/group)

(:mix :fare-utils :uiop :alexandria)

(:export ...))

ASDF can tell that this file depends on system closer-mop (registered above),
lil/interface/definition, lil/interface/base, lil/interface/eq, and
lil/interface/group (package and system names match, and they will be looked up
hierarchically).

ASDF also detects dependencies from :import-from clauses. To depend on a system
without using a package or importing any symbol from it (because you’ll fully qualify them
when used), you may thus use an :import-from clause with an empty list of symbols, as
in:

(defpackage :foo/bar

(:use :cl)

(:import-from :foo/baz #:sym1 #:sym2)

(:import-from :foo/quux)

(:export ...))

The form uiop:define-package is supported as well as defpackage, and has many
options that prove useful in this context, such as :use-reexport and :mix-reexport that
allow for “inheritance” of symbols being exported.

Chapter 7: The Object model of ASDF 20

7 The Object model of ASDF

ASDF is designed in an object-oriented way from the ground up. Both a system’s structure
and the operations that can be performed on systems follow a extensible protocol, allowing
programmers to add new behaviors to ASDF. For example, cffi adds support for special
FFI description files that interface with C libraries and for wrapper files that embed C code
in Lisp. abcl-jar supports creating Java JAR archives in ABCL. poiu supports compiling
code in parallel using background processes.

The key classes in ASDF are component and operation. A component represents an
individual source file or a group of source files, and the products (e.g., fasl files) produced
from it. An operation represents a transformation that can be performed on a component,
turning them from source files to intermediate results to final outputs. Components are
related by dependencies, specified in system definitions.

When ordered to operate with some operation on a component (usually a system),
ASDF will first compute a plan by traversing the dependency graph using function
make-plan.1 The resulting plan object contains an ordered list of actions. An action
is a pair of an operation and a component, representing a particular build step to be
performed. The ordering of the plan ensures that no action is performed before all its
dependencies have been fulfilled.2

In this chapter, we describe ASDF’s object-oriented protocol, the classes that make it
up, and the generic functions on those classes. These generic functions often take both an
operation and a component as arguments: much of the power and configurability of ASDF is
provided by this use of CLOS’s multiple dispatch. We will describe the built-in component
and operation classes, and explain how to extend the ASDF protocol by defining new classes
and methods for ASDF’s generic functions. We will also describe the many hooks that can
be configured to customize the behavior of existing functions.

7.1 Operations

An operation object of the appropriate type is instantiated whenever the user wants to do
something with a system like

• compile all its files

• load the files into a running lisp environment

• copy its source files somewhere else

Operations can be invoked directly, or examined to see what their effects would be
without performing them. There are a bunch of methods specialised on operation and
component type that actually do the grunt work. Operations are invoked on systems via
operate (see [operate], page 21).

ASDF contains a number of pre-defined operation classes for common, and even fairly
uncommon tasks that you might want to do with it. In addition, ASDF contains “abstract”

1 Historically, the function that built a plan was called traverse, and returned a list of actions; it was
deprecated in favor of make-plan (that returns a plan object) when the plan objects were introduced;
the old function is kept for backward compatibility and debugging purposes only.

2 The term action was used by Kent Pitman in his article, “The Description of Large Systems,” (see
[Bibliography], page 73). Although the term was only used by ASDF hackers starting with ASDF 2, the
concept was there since the very beginning of ASDF 1, just not clearly articulated.

Chapter 7: The Object model of ASDF 21

operation classes that programmers can use as building blocks to define ASDF extensions.
We discuss these in turn below.

Operations are invoked on systems via operate.

[Generic function]operate operation component &rest initargs &key force
force-not verbose &allow-other-keys

[Generic function]oos operation component &rest initargs &key
&allow-other-keys

operate invokes operation on system. oos is a synonym for operate (it stands for
operate-on-system).

operation is a symbol that is passed, along with the supplied initargs, to
make-operation (which will call make-instance) to create the operation object.
component is a component designator, usually a string or symbol that designates a
system, sometimes a list of strings or symbols that designate a subcomponent of a
system.

The initargs are passed to the make-instance call when creating the operation object.
Note that dependencies may cause the operation to invoke other operations on the
system or its components: the new operations will be created with the same initargs
as the original one.

If force is :all, then all systems are forced to be recompiled even if not modified
since last compilation. If force is t, then only the system being loaded is forced to
be recompiled even if not modified since last compilation, but other systems are not
affected. If force is a list, then it specifies a list of systems that are forced to be
recompiled even if not modified since last compilation. If force-not is :all, then all
systems are forced not to be recompiled even if modified since last compilation. If
force-not is t, then all systems but the system being loaded are forced not to be
recompiled even if modified since last compilation (note: this was changed in ASDF
3.1.2). If force-not is a list, then it specifies a list of systems that are forced not to
be recompiled even if modified since last compilation.

Both force and force-not apply to systems that are dependencies and were already
compiled. force-not takes precedences over force, as it should, really, but unhappily
only since ASDF 3.1.2. Moreover, systems the name of which is member of the
set *immutable-systems* (represented as an equal hash-table) are always considered
forced-not, and even their .asd is not refreshed from the filesystem.

To see what operate would do, you can use:

(asdf:traverse operation-class system-name)

7.1.1 Predefined operations of ASDF

All the operations described in this section are in the asdf package. They are invoked via
the operate generic function.

(asdf:operate ’asdf:operation-name :system-name {operation-options ...})

[Operation]compile-op
This operation compiles the specified component. A cl-source-file will be
compile-file’d. All the children and dependencies of a system or module will be
recursively compiled by compile-op.

Chapter 7: The Object model of ASDF 22

compile-op depends on prepare-op which itself depends on a load-op of all of a
component’s dependencies, as well as of its parent’s dependencies. When operate is
called on compile-op, all these dependencies will be loaded as well as compiled; yet,
some parts of the system main remain unloaded, because nothing depends on them.
Use load-op to load a system.

[Operation]load-op
This operation loads the compiled code for a specified component. A cl-source-

file will have its compiled fasl loaded, which fasl is the output of compile-op that
load-op depends on.

load-op will recursively load all the children of a system or module.

load-op also depends on prepare-op which itself depends on a load-op of all of a
component’s dependencies, as well as of its parent’s dependencies.

[Operation]prepare-op
This operation ensures that the dependencies of a component and its recursive par-
ents are loaded (as per load-op), as a prerequisite before compile-op and load-op

operations may be performed on a given component.

[Operation]load-source-op, prepare-source-op
load-source-op will load the source for the files in a module rather than the compiled
fasl output. It has a prepare-source-op analog to prepare-op, that ensures the
dependencies are themselves loaded via load-source-op.

[Operation]test-op
This operation will perform some tests on the module. The default method will do
nothing. The default dependency is to require load-op to be performed on the module
first. Its operation-done-p method returns nil, which means that the operation is
never done – we assume that if you invoke the test-op, you want to test the system,
even if you have already done so.

The results of this operation are not defined by ASDF. It has proven difficult to define
how the test operation should signal its results to the user in a way that is compatible
with all of the various test libraries and test techniques in use in the community, and
given the fact that ASDF operations do not return a value indicating success or failure.
For those willing to go to the effort, we suggest defining conditions to signal when a
test-op fails, and storing in those conditions information that describes which tests
fail.

People typically define a separate test system to hold the tests. Doing this avoids
unnecessarily adding a test framework as a dependency on a library. For example,
one might have

(defsystem foo

:in-order-to ((test-op (test-op "foo/test")))

...)

(defsystem foo/test

:depends-on (foo fiveam) ; fiveam is a test framework library

...)

Chapter 7: The Object model of ASDF 23

Then one defines perform methods on test-op such as the following:

(defsystem foo/test

:depends-on (foo fiveam) ; fiveam is a test framework library

:perform (test-op (o s)

(uiop:symbol-call :fiveam ’#:run!

(uiop:find-symbol* ’#:foo-test-suite

:foo-tests)))

...)

[Operation]compile-bundle-op, monolithic-compile-bundle-op,
load-bundle-op, monolithic-load-bundle-op, deliver-asd-op,
monolithic-deliver-asd-op, lib-op, monolithic-lib-op, dll-op,
monolithic-dll-op, image-op, program-op

These are “bundle” operations, that can create a single-file “bundle” for all the con-
tents of each system in an application, or for the entire application.

compile-bundle-op will create a single fasl file for each of the systems needed,
grouping all its many fasls in one, so you can deliver each system as a single fasl
monolithic-compile-bundle-op will create a single fasl file for the target system
and all its dependencies, so you can deliver your entire application as a single fasl.
load-bundle-op will load the output of compile-bundle-op. Note that if it the
output is not up-to-date, compile-bundle-op may load the intermediate fasls as a
side-effect. Bundling fasls together matters a lot on ECL, where the dynamic linking
involved in loading tens of individual fasls can be noticeably more expensive than
loading a single one.

NB: compile-bundle-op, monolithic-compile-bundle-op, load-bundle-op,
monolithic-load-bundle-op, deliver-asd-op, monolithic-deliver-asd-op

were respectively called fasl-op, monolithic-fasl-op, load-fasl-op,
monolithic-load-fasl-op, binary-op, monolithic-binary-op before ASDF 3.1.
The old names still exist for backward compatibility, though they poorly label what
is going on.

Once you have created a fasl with compile-bundle-op, you can use
precompiled-system to deliver it in a way that is compatible with clients having
dependencies on your system, whether it is distributed as source or as a single
binary; the .asd file to be delivered with the fasl will look like this:

(defsystem :mysystem :class :precompiled-system

:fasl (some expression that will evaluate to a pathname))

Or you can use deliver-asd-op to let ASDF create such a system for you as well
as the compile-bundle-op output, or monolithic-deliver-asd-op. This allows
you to deliver code for your systems or applications as a single file. Of course, if
you want to test the result in the current image, before you try to use any newly
created .asd files, you should not forget to (asdf:clear-configuration) or at
least (asdf:clear-source-registry), so it re-populates the source-registry from
the filesystem.

The program-op operation will create an executable program from the specified
system and its dependencies. You can use UIOP for its pre-image-dump hooks,
its post-image-restore hooks, and its access to command-line arguments. And

Chapter 7: The Object model of ASDF 24

you can specify an entry point my-app:main by specifying in your defsystem

the option :entry-point "my-app:main". Depending on your implementation,
running (asdf:operate ’asdf:program-op :my-app) may quit the current Lisp
image upon completion. See the example in test/hello-world-example.asd

and test/hello.lisp, as built and tested by test/test-program.script and
test/make-hello-world.lisp. image-op will dump an image that may not be
standalone and does not start its own function, but follows the usual execution
convention of the underlying Lisp, just with more code pre-loaded, for use as an
intermediate build result or with a wrapper invocation script.

There is also lib-op for building a linkable .a file (Windows: .lib) from all linkable
object dependencies (FFI files, and on ECL, Lisp files too), and its monolithic equiva-
lent monolithic-lib-op. And there is also dll-op (respectively its monolithic equiv-
alent monolithic-lib-op) for building a linkable .so file (Windows: .dll, MacOS
X: .dynlib) to create a single dynamic library for all the extra FFI code to be linked
into each of your systems (respectively your entire application).

All these “bundle” operations are available since ASDF 3 on all actively supported
Lisp implementations, but may be unavailable on unmaintained legacy implementa-
tions. This functionality was previously available for select implementations, as part
of a separate system asdf-bundle, itself descended from the ECL-only asdf-ecl.

The pathname of the output of bundle operations is subject to output-translation as
usual, unless the operation is equal to the :build-operation argument to defsystem.
This behavior is not very satisfactory and may change in the future. Maybe you have
suggestions on how to better configure it?

[Operation]concatenate-source-op, monolithic-concatenate-source-op,
load-concatenated-source-op, compile-concatenated-source-op,
load-compiled-concatenated-source-op,
monolithic-load-concatenated-source-op,
monolithic-compile-concatenated-source-op,
monolithic-load-compiled-concatenated-source-op

These operations, as their respective names indicate, will concatenate all the
cl-source-file source files in a system (or in a system and all its dependencies, if
monolithic), in the order defined by dependencies, then load the result, or compile
and then load the result.

These operations are useful to deliver a system or application as a single source file,
and for testing that said file loads properly, or compiles and then loads properly.

ASDF itself is delivered as a single source file this way, using monolithic-concatenate-
source-op, prepending a prelude and the uiop library before the asdf/defsystem

system itself.

7.1.2 Creating new operations

ASDF was designed to be extensible in an object-oriented fashion. To teach ASDF new
tricks, a programmer can implement the behaviour he wants by creating a subclass of
operation.

ASDF’s pre-defined operations are in no way “privileged”, but it is requested that de-
velopers never use the asdf package for operations they develop themselves. The rationale

Chapter 7: The Object model of ASDF 25

for this rule is that we don’t want to establish a “global asdf operation name registry”, but
also want to avoid name clashes.

Your operation must usually provide methods for one or more of the following generic
functions:

• perform Unless your operation, like prepare-op, is for dependency propagation only,
the most important function for which to define a method is usually perform, which
will be called to perform the operation on a specified component, after all dependencies
have been performed.

The perform method must call input-files and output-files (see below) to locate
its inputs and outputs, because the user is allowed to override the method or tweak the
output-translation mechanism. Perform should only use the primary value returned by
output-files. If one and only one output file is expected, it can call output-file
that checks that this is the case and returns the first and only list element.

• output-files If your perform method has any output, you must define a method for
this function. for ASDF to determine where the outputs of performing operation lie.

Your method may return two values, a list of pathnames, and a boolean. If the boolean
is nil (or you fail to return multiple values), then enclosing :around methods may
translate these pathnames, e.g. to ensure object files are somehow stored in some
implementation-dependent cache. If the boolean is t then the pathnames are marked
not be translated by the enclosing :around method.

• component-depends-on If the action of performing the operation on a component has
dependencies, you must define a method on component-depends-on.

Your method will take as specialized arguments an operation and a component which
together identify an action, and return a list of entries describing actions that this
action depends on. The format of entries is described below.

It is strongly advised that you should always append the results of (call-next-method)
to the results of your method, or “interesting” failures will likely occur, unless you’re
a true specialist of ASDF internals. It is unhappily too late to compatibly use the
append method combination, but conceptually that’s the protocol that is being man-
ually implemented.

Each entry returned by component-depends-on is itself a list.

The first element of an entry is an operation designator: either an operation object
designating itself, or a symbol that names an operation class (that ASDF will instanti-
ate using make-operation). For instance, load-op, compile-op and prepare-op are
common such names, denoting the respective operations.

The rest of each entry is a list of component designators: either a component object
designating itself, or an identifier to be used with find-component. find-component

will be called with the current component’s parent as parent, and the identifier as
second argument. The identifier is typically a string, a symbol (to be downcased as per
coerce-name), or a list of strings or symbols. In particular, the empty list nil denotes
the parent itself.

An operation may provide methods for the following generic functions:

• input-files A method for this function is often not needed, since ASDF has a
pretty clever default input-files mechanism. You only need create a method if

Chapter 7: The Object model of ASDF 26

there are multiple ultimate input files, and/or the bottom one doesn’t depend on the
component-pathname of the component.

• operation-done-p You only need to define a method on that function if you can detect
conditions that invalidate previous runs of the operation, even though no filesystem
timestamp has changed, in which case you return nil (the default is t).

For instance, the method for test-op always returns nil, so that tests are always run
afresh. Of course, the test-op for your system could depend on a deterministically
repeatable test-report-op, and just read the results from the report files, in which
case you could have this method return t.

Operations that print output should send that output to the standard CL stream
standard-output, as the Lisp compiler and loader do.

7.2 Components

A component represents an individual source file or a group of source files, and the things
that get transformed into. A system is a component at the top level of the component
hierarchy, that can be found via find-system. A source-file is a component representing
a single source-file and the successive output files into which it is transformed. A module is
an intermediate component itself grouping several other components, themselves source-files
or further modules.

A system designator is a system itself, or a string or symbol that behaves just like any
other component name (including with regard to the case conversion rules for component
names).

A component designator, relative to a base component, is either a component itself, or
a string or symbol, or a list of designators.

[Function]find-system system-designator &optional (error-p t)
Given a system designator, find-system finds and returns a system. If no system is
found, an error of type missing-component is thrown, or nil is returned if error-p
is false.

To find and update systems, find-system funcalls each element in the
system-definition-search-functions list, expecting a pathname to be
returned, or a system object, from which a pathname may be extracted, and that
will be registered. The resulting pathname (if any) is loaded if one of the following
conditions is true:

• there is no system of that name in memory

• the pathname is different from that which was previously loaded

• the file’s last-modified time exceeds the last-modified time of the system in
memory

When system definitions are loaded from .asd files, they are implicitly loaded into
the ASDF-USER package, which uses ASDF, UIOP and UIOP/COMMON-LISP3 Programmers
who do anything non-trivial in a .asd file, such as defining new variables, functions

3 Note that between releases 2.27 and 3.0.3, only UIOP/PACKAGE, not all of UIOP, was used; if you want
your code to work with releases earlier than 3.1.2, you may have to explicitly define a package that uses
UIOP, or use proper package prefix to your symbols, as in uiop:version<.

Chapter 7: The Object model of ASDF 27

or classes, should include defpackage and in-package forms in this file, so they will
not overwrite each others’ extensions. Such forms might also help the files behave
identically if loaded manually with cl:load for development or debugging, though
we recommend you use the function asdf::load-asd instead, which the slime-asdf
contrib knows about.

The default value of *system-definition-search-functions* is a list of three func-
tions. The first function looks in each of the directories given by evaluating members
of *central-registry* for a file whose name is the name of the system and whose
type is asd; the first such file is returned, whether or not it turns out to actually
define the appropriate system. The second function does something similar, for the
directories specified in the source-registry, but searches the filesystem only once
and caches its results. The third function makes the package-inferred-system

extension work, see Section 6.5 [The package-inferred-system extension], page 18.

Because of the way these search functions are defined, you should put the definition
for a system foo in a file named foo.asd, in a directory that is in the central registry
or which can be found using the source registry configuration.

It is often useful to define multiple systems in a same file, but ASDF can only locate
a system’s definition file based on the system name. For this reason, ASDF 3’s sys-
tem search algorithm has been extended to allow a file foo.asd to contain secondary
systems named foo/bar, foo/baz, foo/quux, etc., in addition to the primary system
named foo. The first component of a system name, separated by the slash character,
/, is called the primary name of a system. The primary name may be extracted by
function asdf::primary-system-name; when ASDF 3 is told to find a system whose
name has a slash, it will first attempt to load the corresponding primary system,
and will thus see any such definitions, and/or any definition of a package-inferred-

system.4 If your file foo.asd also defines systems that do not follow this convention,
e.g., a system named foo-test, ASDF will not be able to automatically locate a def-
inition for these systems, and will only see their definition if you explicitly find or
load the primary system using e.g. (asdf:find-system "foo") before you try to use
them. We strongly recommend against this practice, though it is currently supported
for backward compatibility.

[Function]primary-system-name name
Internal (not exported) function, asdf::primary-system-name. Returns the primary
system name (the portion before the slash, /, in a secondary system name) from name.

[Function]locate-system name
This function should typically not be invoked directly. It is exported as part of the
API only for programmers who wish to provide their own *system-definition-

search-functions*.

Given a system name designator, try to locate where to load the system definition
from. Returns five values: foundp, found-system, pathname, previous, and previous-
time. foundp is true when a system was found, either a new as yet unregistered one,

4 ASDF 2.26 and earlier versions do not support this primary system name convention. With these
versions of ASDF you must explicitly load foo.asd before you can use system foo/bar defined therein,
e.g. using (asdf:find-system "foo"). We do not support ASDF 2, and recommend that you should
upgrade to ASDF 3.

Chapter 7: The Object model of ASDF 28

or a previously registered one. The found-system return value will be a system object,
if a system definition is found in your source registry. The system definition will not
be loaded if it hasn’t been loaded already. pathname when not null is a path from
which to load the system, either associated with found-system, or with the previous
system. If previous is not null, it will be a previously loaded system object of the
same name (note that the system definition is previously-loaded: the system itself
may or may not be). previous-time when not null is the timestamp of the previous
system definition file, at the time when the previous system definition was loaded.

For example, if your current registry has foo.asd in /current/path/to/foo.asd, but
system foo was previously loaded from /previous/path/to/foo.asd then locate-
system will return the following values:

1. foundp will be T,

2. found-system will be NIL,

3. pathname will be #p"/current/path/to/foo.asd",

4. previous will be an object of type SYSTEM with system-source-file slot value
of #p"/previous/path/to/foo.asd"

5. previous-time will be the timestamp of #p"/previous/path/to/foo.asd" at the
time it was loaded.

[Function]find-component base path
Given a base component (or designator for such), and a path, find the component
designated by the path starting from the base.

If path is a component object, it designates itself, independently from the base.

If path is a string, or symbol denoting a string via coerce-name, then base is re-
solved to a component object, which must be a system or module, and the designated
component is the child named by the path.

If path is a cons cell, find-component with the base and the car of the path, and
the resulting object is used as the base for a tail call to find-component with the
car of the path.

If base is a component object, it designates itself.

If base is null, then path is used as the base, with nil as the path.

If base is a string, or symbol denoting a string via coerce-name, it designates a
system as per find-system.

If base is a cons cell, it designates the component found by find-component with its
car as base and cdr as path.

7.2.1 Common attributes of components

All components, regardless of type, have the following attributes. All attributes except
name are optional.

7.2.1.1 Name

A component name is a string or a symbol. If a symbol, its name is taken and lowercased.
This translation is performed by the exported function coerce-name.

Unless overridden by a :pathname attribute, the name will be interpreted as a pathname
specifier according to a Unix-style syntax. See Section 6.3 [Pathname specifiers], page 11.

Chapter 7: The Object model of ASDF 29

7.2.1.2 Version identifier

This optional attribute specifies a version for the current component. The version should
typically be a string of integers separated by dots, for example ‘1.0.11’. For more infor-
mation on version specifiers, see Section 6.3 [The defsystem grammar], page 11.

A version may then be queried by the generic function version-satisfies, to see if
:version dependencies are satisfied, and when specifying dependencies, a constraint of
minimal version to satisfy can be specified using e.g. (:version "mydepname" "1.0.11").

Note that in the wild, we typically see version numbering only on components of type
system. Presumably it is much less useful within a given system, wherein the library author
is responsible to keep the various files in synch.

7.2.1.3 Required features

Traditionally defsystem users have used #+ reader conditionals to include or exclude specific
per-implementation files. For example, CFFI, the portable C foreign function interface
contained lines like:

#+sbcl (:file "cffi-sbcl")

An unfortunate side effect of this approach is that no single implementation can read the
entire system. This causes problems if, for example, one wished to design an archive-op

that would create an archive file containing all the sources, since for example the file
cffi-sbcl.lisp above would be invisible when running the archive-op on any imple-
mentation other than SBCL.

Starting with ASDF 3, components may therefore have an :if-feature option. The
value of this option should be a feature expression using the same syntax as #+ does. If that
feature expression evaluates to false, any reference to the component will be ignored during
compilation, loading and/or linking. Since the expression is read by the normal reader, you
must explicitly prefix your symbols with : so they be read as keywords; this is as contrasted
with the #+ syntax that implicitly reads symbols in the keyword package by default.

For instance, :if-feature (:and :x86 (:or :sbcl :cmu :scl)) specifies that the given
component is only to be compiled and loaded when the implementation is SBCL, CMUCL
or Scieneer CL on an x86 machine. You cannot write it as :if-feature (and x86 (or sbcl

cmu scl)) since the symbols would not be read as keywords.

See [if-feature-option], page 17.

7.2.1.4 Dependencies

This attribute specifies dependencies of the component on its siblings. It is optional but
often necessary.

There is an excitingly complicated relationship between the initarg and the method that
you use to ask about dependencies

Dependencies are between (operation component) pairs. In your initargs for the compo-
nent, you can say

:in-order-to ((compile-op (load-op "a" "b") (compile-op "c"))

(load-op (load-op "foo")))

This means the following things:

Chapter 7: The Object model of ASDF 30

• before performing compile-op on this component, we must perform load-op on a and
b, and compile-op on c,

• before performing load-op, we have to load foo

The syntax is approximately

(this-op @{(other-op required-components)@}+)

simple-component-name := string

| symbol

required-components := simple-component-name

| (required-components required-components)

component-name := simple-component-name

| (:version simple-component-name minimum-version-object)

Side note:

This is on a par with what ACL defsystem does. mk-defsystem is less general: it has an
implied dependency

for all source file x, (load x) depends on (compile x)

and using a :depends-on argument to say that b depends on a actually means that

(compile b) depends on (load a)

This is insufficient for e.g. the McCLIM system, which requires that all the files are
loaded before any of them can be compiled]

End side note

In ASDF, the dependency information for a given component and operation can be
queried using (component-depends-on operation component), which returns a list

((load-op "a") (load-op "b") (compile-op "c") ...)

component-depends-on can be subclassed for more specific component/operation types:
these need to (call-next-method) and append the answer to their dependency, unless they
have a good reason for completely overriding the default dependencies.

If it weren’t for CLISP, we’d be using LIST method combination to do this transparently.
But, we need to support CLISP. If you have the time for some CLISP hacking, I’m sure
they’d welcome your fixes.

A minimal version can be specified for a component you depend on (typically
another system), by specifying (:version "other-system" "1.2.3") instead of simply
"other-system" as the dependency. See the discussion of the semantics of :version in
the defsystem grammar.

7.2.1.5 pathname

This attribute is optional and if absent (which is the usual case), the component name will
be used.

See Section 6.3 [Pathname specifiers], page 11, for an explanation of how this attribute
is interpreted.

Chapter 7: The Object model of ASDF 31

Note that the defsystem macro (used to create a “top-level” system) does additional
processing to set the filesystem location of the top component in that system. This is
detailed elsewhere. See Chapter 6 [Defining systems with defsystem], page 10.

7.2.1.6 properties

This attribute is optional.

Packaging systems often require information about files or systems in addition to that
specified by ASDF’s pre-defined component attributes. Programs that create vendor pack-
ages out of ASDF systems therefore have to create “placeholder” information to satisfy these
systems. Sometimes the creator of an ASDF system may know the additional information
and wish to provide it directly.

(component-property component property-name) and associated setfmethod will al-
low the programmatic update of this information. Property names are compared as if by
EQL, so use symbols or keywords or something.

7.2.2 Pre-defined subclasses of component

[Component]source-file
A source file is any file that the system does not know how to generate from other
components of the system.

Note that this is not necessarily the same thing as “a file containing data that is
typically fed to a compiler”. If a file is generated by some pre-processor stage (e.g.
a .h file from .h.in by autoconf) then it is not, by this definition, a source file.
Conversely, we might have a graphic file that cannot be automatically regenerated,
or a proprietary shared library that we received as a binary: these do count as source
files for our purposes.

Subclasses of source-file exist for various languages. FIXME: describe these.

[Component]module
A module is a collection of sub-components.

A module component has the following extra initargs:

• :components the components contained in this module

• :default-component-class All children components which don’t specify their
class explicitly are inferred to be of this type.

• :if-component-dep-fails This attribute was removed in ASDF 3. Do not use
it. Use :if-feature instead (see [required-features], page 29, and see [if-feature-
option], page 17).

• :serial When this attribute is set, each subcomponent of this component is as-
sumed to depend on all subcomponents before it in the list given to :components,
i.e. all of them are loaded before a compile or load operation is performed on it.

The default operation knows how to traverse a module, so most operations will not
need to provide methods specialised on modules.

module may be subclassed to represent components such as foreign-language linked
libraries or archive files.

Chapter 7: The Object model of ASDF 32

[Component]system
system is a subclass of module.

A system is a module with a few extra attributes for documentation purposes; these
are given elsewhere. See Section 6.3 [The defsystem grammar], page 11.

Users can create new classes for their systems: the default defsystem macro takes a
:class keyword argument.

7.2.3 Creating new component types

New component types are defined by subclassing one of the existing component classes and
specializing methods on the new component class.

As an example, suppose we have some implementation-dependent functionality that we
want to isolate in one subdirectory per Lisp implementation our system supports. We create
a subclass of cl-source-file:

(defclass unportable-cl-source-file (cl-source-file)

())

Function asdf:implementation-type (exported since 2.014.14) gives us the name
of the subdirectory. All that’s left is to define how to calculate the pathname of an
unportable-cl-source-file.

(defmethod component-pathname ((component unportable-cl-source-file))

(merge-pathnames*

(parse-unix-namestring (format nil "~(~A~)/" (asdf:implementation-type)))

(call-next-method)))

The new component type is used in a defsystem form in this way:

(defsystem :foo

:components

((:file "packages")

...

(:unportable-cl-source-file "threads"

:depends-on ("packages" ...))

...

)

7.3 Dependencies

To be successfully build-able, this graph of actions must be acyclic. If, as a user, extender
or implementer of ASDF, you introduce a cycle into the dependency graph, ASDF will
fail loudly. To clearly distinguish the direction of dependencies, ASDF 3 uses the words
requiring and required as applied to an action depending on the other: the requiring action
depends-on the completion of all required actions before it may itself be performed.

Using the defsystem syntax, users may easily express direct dependencies along the
graph of the object hierarchy: between a component and its parent, its children, and its
siblings. By defining custom CLOS methods, you can express more elaborate dependencies
as you wish. Most common operations, such as load-op, compile-op or load-source-

op are automatically propagate “downward” the component hierarchy and are “covariant”
with it: to act the operation on the parent module, you must first act it on all the children

Chapter 7: The Object model of ASDF 33

components, with the action on the parent being parent of the action on each child. Other
operations, such as prepare-op and prepare-source-op (introduced in ASDF 3) are auto-
matically propagated “upward” the component hierarchy and are “contravariant” with it:
to perform the operation of preparing for compilation of a child component, you must per-
form the operation of preparing for compilation of its parent component, and so on, ensuring
that all the parent’s dependencies are (compiled and) loaded before the child component
may be compiled and loaded. Yet other operations, such as test-op or load-bundle-op
remain at the system level, and are not propagated along the hierarchy, but instead do
something global on the system.

7.4 Functions

[Function]version-satisfies version version-spec
Does version satisfy the version-spec. A generic function. ASDF provides built-in
methods for version being a component or string. version-spec should be a string.
If it’s a component, its version is extracted as a string before further processing.

A version string satisfies the version-spec if after parsing, the former is no older than
the latter. Therefore "1.9.1", "1.9.2" and "1.10" all satisfy "1.9.1", but "1.8.4"
or "1.9" do not. For more information about how version-satisfies parses and
interprets version strings and specifications, see Section 6.3 [The defsystem grammar],
page 11 (version specifiers) and Section 7.2.1 [Common attributes of components],
page 28.

Note that in versions of ASDF prior to 3.0.1, including the entire ASDF 1 and ASDF
2 series, version-satisfies would also require that the version and the version-spec
have the same major version number (the first integer in the list); if the major version
differed, the version would be considered as not matching the spec. But that feature
was not documented, therefore presumably not relied upon, whereas it was a nuisance
to several users. Starting with ASDF 3.0.1, version-satisfies does not treat the
major version number specially, and returns T simply if the first argument designates
a version that isn’t older than the one specified as a second argument. If needs be, the
(:version ...) syntax for specifying dependencies could be in the future extended
to specify an exclusive upper bound for compatible versions as well as an inclusive
lower bound.

Chapter 8: Controlling where ASDF searches for systems 34

8 Controlling where ASDF searches for systems

8.1 Configurations

Configurations specify paths where to find system files.

1. The search registry may use some hardcoded wrapping registry specification. This
allows some implementations (notably SBCL) to specify where to find some special
implementation-provided systems that need to precisely match the version of the im-
plementation itself.

2. An application may explicitly initialize the source-registry configuration using the con-
figuration API (see Chapter 8 [Configuration API], page 34, below) in which case this
takes precedence. It may itself compute this configuration from the command-line,
from a script, from its own configuration file, etc.

3. The source registry will be configured from the environment variable CL_SOURCE_

REGISTRY if it exists.

4. The source registry will be configured from user configuration file $XDG_

CONFIG_DIRS/common-lisp/source-registry.conf (which defaults to
~/.config/common-lisp/source-registry.conf) if it exists.

5. The source registry will be configured from user configuration directory
$XDG_CONFIG_DIRS/common-lisp/source-registry.conf.d/ (which defaults to
~/.config/common-lisp/source-registry.conf.d/) if it exists.

6. The source registry will be configured from default user configuration trees
~/common-lisp/ (since ASDF 3.1.2 only), ~/.sbcl/systems/ (on SBCL only),
$XDG_DATA_HOME/common-lisp/systems/ (no recursion, link farm) $XDG_

DATA_HOME/common-lisp/source/. The XDG_DATA_HOME directory defaults to
~/.local/share/. On Windows, the local-appdata and appdata directories are
used instead.

7. The source registry will be configured from system configuration file
/etc/common-lisp/source-registry.conf if it exists.

8. The source registry will be configured from system configuration directory
/etc/common-lisp/source-registry.conf.d/ if it exists.

9. The source registry will be configured from a default configuration. This configura-
tion may allow for implementation-specific systems to be found, for systems to be
found the current directory (at the time that the configuration is initialized) as well
as :directory entries for $XDG_DATA_DIRS/common-lisp/systems/ and :tree en-
tries for $XDG_DATA_DIRS/common-lisp/source/, where XDG_DATA_DIRS defaults to
/usr/local/share and /usr/share on Unix, and the common-appdata directory on
Windows.

10. The source registry may include implementation-dependent directories that correspond
to implementation-provided extensions.

Each of these configurations is specified as an s-expression in a trivial domain-specific
language (defined below). Additionally, a more shell-friendly syntax is available for the
environment variable (defined yet below).

Chapter 8: Controlling where ASDF searches for systems 35

Each of these configurations is only used if the previous configuration explicitly or im-
plicitly specifies that it includes its inherited configuration.

Additionally, some implementation-specific directories may be automatically prepended
to whatever directories are specified in configuration files, no matter if the last one inherits
or not.

8.2 Truenames and other dangers

One great innovation of the original ASDF was its ability to leverage CL:TRUENAME to locate
where your source code was and where to build it, allowing for symlink farms as a simple
but effective configuration mechanism that is easy to control programmatically. ASDF 3
still supports this configuration style, and it is enabled by default; however we recommend
you instead use our source-registry configuration mechanism described below, because it is
easier to setup in a portable way across users and implementations.

Additionally, some people dislike truename, either because it is very slow on their system,
or because they are using content-addressed storage where the truename of a file is related
to a digest of its individual contents, and not to other files in the same intended project. For
these people, ASDF 3 allows to eschew the TRUENAME mechanism, by setting the variable
asdf:*resolve-symlinks* to nil.

PS: Yes, if you haven’t read Vernor Vinge’s short but great classic “True Names... and
Other Dangers” then you’re in for a treat.

8.3 XDG base directory

Note that we purport to respect the XDG base directory specification as to where config-
uration files are located, where data files are located, where output file caches are located.
Mentions of XDG variables refer to that document.

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

This specification allows the user to specify some environment variables to customize
how applications behave to his preferences.

On Windows platforms, when not using Cygwin, instead of the XDG base directory
specification, we try to use folder configuration from the registry regarding Common AppData

and similar directories. Since support for querying the Windows registry is not possible to
do in reasonable amounts of portable Common Lisp code, ASDF 3 relies on the environment
variables that Windows usually exports.

8.4 Backward Compatibility

For backward compatibility as well as to provide a practical backdoor for hackers, ASDF will
first search for .asd files in the directories specified in asdf:*central-registry* before
it searches in the source registry above.

See Chapter 4 [Configuring ASDF to find your systems — old style], page 6.

By default, asdf:*central-registry* will be empty.

This old mechanism will therefore not affect you if you don’t use it, but will take prece-
dence over the new mechanism if you do use it.

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Chapter 8: Controlling where ASDF searches for systems 36

8.5 Configuration DSL

Here is the grammar of the s-expression (SEXP) DSL for source-registry configuration:

;; A configuration is a single SEXP starting with the keyword

;; :source-registry followed by a list of directives.

CONFIGURATION := (:source-registry DIRECTIVE ...)

;; A directive is one of the following:

DIRECTIVE :=

;; INHERITANCE DIRECTIVE:

;; Your configuration expression MUST contain

;; exactly one of the following:

:inherit-configuration |

;; splices inherited configuration (often specified last) or

:ignore-inherited-configuration |

;; drop inherited configuration (specified anywhere)

;; forward compatibility directive (since ASDF 2.011.4), useful when

;; you want to use new configuration features but have to bootstrap

;; the newer required ASDF from an older release that doesn’t

;; support said features:

:ignore-invalid-entries |

;; add a single directory to be scanned (no recursion)

(:directory DIRECTORY-PATHNAME-DESIGNATOR) |

;; add a directory hierarchy, recursing but

;; excluding specified patterns

(:tree DIRECTORY-PATHNAME-DESIGNATOR) |

;; override the defaults for exclusion patterns

(:exclude EXCLUSION-PATTERN ...) |

;; augment the defaults for exclusion patterns

(:also-exclude EXCLUSION-PATTERN ...) |

;; Note that the scope of a an exclude pattern specification is

;; the rest of the current configuration expression or file.

;; splice the parsed contents of another config file

(:include REGULAR-FILE-PATHNAME-DESIGNATOR) |

;; This directive specifies that some default must be spliced.

:default-registry

REGULAR-FILE-PATHNAME-DESIGNATOR

:= PATHNAME-DESIGNATOR ; interpreted as a file

DIRECTORY-PATHNAME-DESIGNATOR

:= PATHNAME-DESIGNATOR ; interpreted as a directory

Chapter 8: Controlling where ASDF searches for systems 37

PATHNAME-DESIGNATOR :=

NIL | ;; Special: skip this entry.

ABSOLUTE-COMPONENT-DESIGNATOR ;; see pathname DSL

EXCLUSION-PATTERN := a string without wildcards, that will be matched

exactly against the name of a any subdirectory in the directory

component of a path. e.g. "_darcs" will match

#p"/foo/bar/_darcs/src/bar.asd"

Pathnames are designated using another DSL, shared with the output-translations con-
figuration DSL below. The DSL is resolved by the function asdf::resolve-location, to
be documented and exported at some point in the future.

ABSOLUTE-COMPONENT-DESIGNATOR :=

(ABSOLUTE-COMPONENT-DESIGNATOR RELATIVE-COMPONENT-DESIGNATOR ...) |

STRING |

;; namestring (better be absolute or bust, directory assumed where

;; applicable). In output-translations, directory is assumed and

;; **/*.*.* added if it’s last. On MCL, a MacOSX-style POSIX

;; namestring (for MacOS9 style, use #p"..."); Note that none of the

;; above applies to strings used in *central-registry*, which

;; doesn’t use this DSL: they are processed as normal namestrings.

;; however, you can compute what you put in the *central-registry*

;; based on the results of say

;; (asdf::resolve-location "/Users/fare/cl/cl-foo/")

PATHNAME |

;; pathname (better be an absolute path, or bust)

;; In output-translations, unless followed by relative components,

;; it better have appropriate wildcards, as in **/*.*.*

:HOME | ; designates the user-homedir-pathname ~/

:USER-CACHE | ; designates the default location for the user cache

:HERE |

;; designates the location of the configuration file

;; (or *default-pathname-defaults*, if invoked interactively)

:ROOT

;; magic, for output-translations source only: paths that are relative

;; to the root of the source host and device

They keyword :SYSTEM-CACHE is not accepted in ASDF 3.1 and beyond: it

was a security hazard.

RELATIVE-COMPONENT-DESIGNATOR :=

(RELATIVE-COMPONENT-DESIGNATOR RELATIVE-COMPONENT-DESIGNATOR ...) |

STRING |

;; relative directory pathname as interpreted by

;; parse-unix-namestring.

;; In output translations, if last component, **/*.*.* is added

Chapter 8: Controlling where ASDF searches for systems 38

PATHNAME | ; pathname; unless last component, directory is assumed.

:IMPLEMENTATION |

;; directory based on implementation, e.g. sbcl-1.0.45-linux-x64

:IMPLEMENTATION-TYPE |

;; a directory based on lisp-implementation-type only, e.g. sbcl

:DEFAULT-DIRECTORY |

;; a relativized version of the default directory

:*/ | ;; any direct subdirectory (since ASDF 2.011.4)

:**/ | ;; any recursively inferior subdirectory (since ASDF 2.011.4)

:*.*.* | ;; any file (since ASDF 2.011.4)

The keywords :UID and :USERNAME are no longer supported.

For instance, as a simple case, my ~/.config/common-lisp/source-registry.conf,
which is the default place ASDF looks for this configuration, once contained:

(:source-registry

(:tree (:home "cl")) ;; will expand to e.g. "/home/joeluser/cl/"

:inherit-configuration)

8.6 Configuration Directories

Configuration directories consist in files each containing a list of directives without any
enclosing (:source-registry ...) form. The files will be sorted by namestring as if by
string< and the lists of directives of these files with be concatenated in order. An implicit
:inherit-configuration will be included at the end of the list.

System-wide or per-user Common Lisp software distributions such as De-
bian packages or some future version of clbuild may then include files
such as /etc/common-lisp/source-registry.conf.d/10-foo.conf or
~/.config/common-lisp/source-registry.conf.d/10-foo.conf to easily and
modularly register configuration information about software being distributed.

The convention is that, for sorting purposes, the names of files in such a directory begin
with two digits that determine the order in which these entries will be read. Also, the type
of these files must be .conf, which not only simplifies the implementation by allowing for
more portable techniques in finding those files, but also makes it trivial to disable a file, by
renaming it to a different file type.

Directories may be included by specifying a directory pathname or namestring in an
:include directive, e.g.:

(:include "/foo/bar/")

Hence, to achieve the same effect as my example ~/.config/common-lisp/source-

registry.conf above, I could simply create a file ~/.config/common-lisp/source-

registry.conf.d/33-home-fare-cl.conf alone in its directory with the following
contents:

(:tree "/home/fare/cl/")

8.6.1 The :here directive

The :here directive is an absolute pathname designator that refers to the directory con-
taining the configuration file currently being processed.

Chapter 8: Controlling where ASDF searches for systems 39

The :here directive is intended to simplify the delivery of complex CL systems, and
for easy configuration of projects shared through revision control systems, in accordance
with our design principle that each participant should be able to provide all and only the
information available to him or her.

Consider a person X who has set up the source code repository for a complex project
with a master directory dir/. Ordinarily, one might simply have the user add a directive
that would look something like this:

(:tree "path/to/dir")

But what if X knows that there are very large subtrees under dir that are filled with,
e.g., Java source code, image files for icons, etc.? All of the asdf system definitions are
contained in the subdirectories dir/src/lisp/ and dir/extlib/lisp/, and these are the
only directories that should be searched.

In this case, X can put into dir/ a file asdf.conf that contains the following:

(:source-registry

(:tree (:here "src/lisp/"))

(:tree (:here "extlib/lisp"))

(:directory (:here "outlier/")))

Then when someone else (call her Y) checks out a copy of this repository, she need only
add

(:include "/path/to/my/checkout/directory/asdf.conf")

to one of her previously-existing asdf source location configuration files, or invoke
initialize-source-registry with a configuration form containing that s-expression.
ASDF will find the .conf file that X has provided, and then set up source locations within
the working directory according to X’s (relative) instructions.

8.7 Shell-friendly syntax for configuration

When considering environment variable CL_SOURCE_REGISTRY ASDF will skip to next con-
figuration if it’s an empty string. It will READ the string as a SEXP in the DSL if it begins
with a paren (, otherwise it will be interpreted much like TEXINPUTS, as a list of paths,
where

* paths are separated by a : (colon) on Unix platforms (including cygwin), by a ;

(semicolon) on other platforms (mainly, Windows).

* each entry is a directory to add to the search path.

* if the entry ends with a double slash // then it instead indicates a tree in the subdi-
rectories of which to recurse.

* if the entry is the empty string (which may only appear once), then it indicates that
the inherited configuration should be spliced there.

8.8 Search Algorithm

In case that isn’t clear, the semantics of the configuration is that when searching for a
system of a given name, directives are processed in order.

When looking in a directory, if the system is found, the search succeeds, otherwise it
continues.

Chapter 8: Controlling where ASDF searches for systems 40

When looking in a tree, if one system is found, the search succeeds. If multiple systems
are found, the consequences are unspecified: the search may succeed with any of the found
systems, or an error may be raised. ASDF currently returns the first system found, XCVB
currently raised an error. If none is found, the search continues.

Exclude statements specify patterns of subdirectories the systems from which to ignore.
Typically you don’t want to use copies of files kept by such version control systems as Darcs.
Exclude statements are not propagated to further included or inherited configuration files
or expressions; instead the defaults are reset around every configuration statement to the
default defaults from asdf::*default-source-registry-exclusions*.

Include statements cause the search to recurse with the path specifications from the file
specified.

An inherit-configuration statement cause the search to recurse with the path specifica-
tions from the next configuration (see Chapter 8 [Configurations], page 34 above).

8.9 Caching Results

The implementation is allowed to either eagerly compute the information from the config-
urations and file system, or to lazily re-compute it every time, or to cache any part of it as
it goes. To explicitly flush any information cached by the system, use the API below.

8.10 Configuration API

The specified functions are exported from your build system’s package. Thus for ASDF the
corresponding functions are in package ASDF, and for XCVB the corresponding functions
are in package XCVB.

[Function]initialize-source-registry &optional PARAMETER
will read the configuration and initialize all internal variables. You may extend or
override configuration from the environment and configuration files with the given
PARAMETER, which can be nil (no configuration override), or a SEXP (in the
SEXP DSL), a string (as in the string DSL), a pathname (of a file or directory with
configuration), or a symbol (fbound to function that when called returns one of the
above).

[Function]clear-source-registry
undoes any source registry configuration and clears any cache for the search algorithm.
You might want to call this function (or better, clear-configuration) before you
dump an image that would be resumed with a different configuration, and return
an empty configuration. Note that this does not include clearing information about
systems defined in the current image, only about where to look for systems not yet
defined.

[Function]ensure-source-registry &optional PARAMETER
checks whether a source registry has been initialized. If not, initialize it with the
given PARAMETER.

Every time you use ASDF’s find-system, or anything that uses it (such as operate,
load-system, etc.), ensure-source-registry is called with parameter nil, which the first

Chapter 8: Controlling where ASDF searches for systems 41

time around causes your configuration to be read. If you change a configuration file, you
need to explicitly initialize-source-registry again, or maybe simply to clear-source-
registry (or clear-configuration) which will cause the initialization to happen next time
around.

8.11 Introspection

8.11.1 *source-registry-parameter* variable

We have made available the variable *source-registry-parameter* that can be used by
code that wishes to introspect about the (past) configuration of ASDF’s source registry. This
variable should never be set! It will be set as a side-effect of calling initialize-source-

registry; user code should treat it as read-only.

8.11.2 Information about system dependencies

ASDF makes available three functions to read system interdependencies. These are intended
to aid programmers who wish to perform dependency analyses.

[Function]system-defsystem-depends-on system

[Function]system-depends-on system

[Function]system-weakly-depends-on system
Returns a list of names of systems that are weakly depended on by system. Weakly
depended on systems are optionally loaded only if ASDF can find them; failure to
find such systems does not cause an error in loading.

Note that the return value for system-weakly-depends-on is simpler than the return
values of the other two system dependency introspection functions.

8.12 Status

This mechanism is vastly successful, and we have declared that asdf:*central-registry*
is not recommended anymore, though we will continue to support it. All hooks into
implementation-specific search mechanisms have been integrated in the wrapping-source-
registry that everyone uses implicitly.

8.13 Rejected ideas

Alternatives I (FRR) considered and rejected while developing ASDF 2 included:

1. Keep asdf:*central-registry* as the master with its current semantics, and some-
how the configuration parser expands the new configuration language into a expanded
series of directories of subdirectories to lookup, pre-recursing through specified hierar-
chies. This is kludgy, and leaves little space of future cleanups and extensions.

2. Keep asdf:*central-registry* as the master but extend its semantics in completely
new ways, so that new kinds of entries may be implemented as a recursive search, etc.
This seems somewhat backwards.

3. Completely remove asdf:*central-registry* and break backwards compatibility.
Hopefully this will happen in a few years after everyone migrate to a better ASDF
and/or to XCVB, but it would be very bad to do it now.

Chapter 8: Controlling where ASDF searches for systems 42

4. Replace asdf:*central-registry* by a symbol-macro with appropriate magic when
you dereference it or setf it. Only the new variable with new semantics is handled by
the new search procedure. Complex and still introduces subtle semantic issues.

I’ve been suggested the below features, but have rejected them, for the sake of keeping
ASDF no more complex than strictly necessary.

• More syntactic sugar: synonyms for the configuration directives, such as
(:add-directory X) for (:directory X), or (:add-directory-hierarchy X) or
(:add-directory X :recurse t) for (:tree X).

• The possibility to register individual files instead of directories.

• Integrate Xach Beane’s tilde expander into the parser, or something similar that is shell-
friendly or shell-compatible. I’d rather keep ASDF minimal. But maybe this precisely
keeps it minimal by removing the need for evaluated entries that ASDF has? i.e. uses
of USER-HOMEDIR-PATHNAME and $SBCL_HOME Hopefully, these are already superseded
by the :default-registry

• Using the shell-unfriendly syntax /** instead of // to specify recursion down a filesys-
tem tree in the environment variable. It isn’t that Lisp friendly either.

8.14 TODO

• Add examples

8.15 Credits for the source-registry

Thanks a lot to Stelian Ionescu for the initial idea.

Thanks to Rommel Martinez for the initial implementation attempt.

All bad design ideas and implementation bugs are mine, not theirs. But so are good
design ideas and elegant implementation tricks.

— Francois-Rene Rideau fare@tunes.org, Mon, 22 Feb 2010 00:07:33 -0500

mailto:fare@tunes.org

Chapter 9: Controlling where ASDF saves compiled files 43

9 Controlling where ASDF saves compiled files

Each Common Lisp implementation has its own format for compiled files or fasls.1 If you
use multiple implementations (or multiple versions of the same implementation), you’ll soon
find your source directories littered with various fasls, dfsls, cfsls and so on. Worse yet,
multiple implementations use the same file extension and some implementations maintain
the same file extension while changing formats from version to version (or platform to
platform). This can lead to many errors and much confusion as you switch from one
implementation to the next.

Since ASDF 2, ASDF includes the asdf-output-translations facility to mitigate the
problem.

9.1 Configurations

Configurations specify mappings from input locations to output locations. Once again we
rely on the XDG base directory specification for configuration. See Chapter 8 [XDG base
directory], page 34.

1. Some hardcoded wrapping output translations configuration may be used. This allows
special output translations (or usually, invariant directories) to be specified correspond-
ing to the similar special entries in the source registry.

2. An application may explicitly initialize the output-translations configuration using the
Configuration API in which case this takes precedence. (see Chapter 9 [Configuration
API], page 43.) It may itself compute this configuration from the command-line, from
a script, from its own configuration file, etc.

3. The source registry will be configured from the environment variable ASDF_OUTPUT_

TRANSLATIONS if it exists.

4. The source registry will be configured from user configuration file $XDG_

CONFIG_DIRS/common-lisp/asdf-output-translations.conf (which defaults to
~/.config/common-lisp/asdf-output-translations.conf) if it exists.

5. The source registry will be configured from user configuration directory $XDG_

CONFIG_DIRS/common-lisp/asdf-output-translations.conf.d/ (which defaults to
~/.config/common-lisp/asdf-output-translations.conf.d/) if it exists.

6. The source registry will be configured from system configuration file
/etc/common-lisp/asdf-output-translations.conf if it exists.

7. The source registry will be configured from system configuration directory
/etc/common-lisp/asdf-output-translations.conf.d/ if it exists.

Each of these configurations is specified as a SEXP in a trivial domain-specific lan-
guage (see Section 8.5 [Configuration DSL], page 36). Additionally, a more shell-friendly
syntax is available for the environment variable (see Section 8.7 [Shell-friendly syntax for
configuration], page 39).

When processing an entry in the above list of configuration methods, ASDF will stop
unless that entry explicitly or implicitly specifies that it includes its inherited configuration.

1 “FASL” is short for “FASt Loading.”

Chapter 9: Controlling where ASDF saves compiled files 44

Note that by default, a per-user cache is used for output files. This allows the seamless
use of shared installations of software between several users, and takes files out of the way
of the developers when they browse source code, at the expense of taking a small toll when
developers have to clean up output files and find they need to get familiar with output-
translations first.2

9.2 Backward Compatibility

We purposely do not provide backward compatibility with earlier versions of ASDF-Binary-
Locations (8 Sept 2009), common-lisp-controller (7.0) or cl-launch (2.35), each of
which had similar general capabilities. The APIs of these programs were not designed
for easy user configuration through configuration files. Recent versions of common-lisp-
controller (7.2) and cl-launch (3.000) use the new asdf-output-translations API as
defined below. ASDF-Binary-Locations is fully superseded and not to be used anymore.

This incompatibility shouldn’t inconvenience many people. Indeed, few people use and
customize these packages; these few people are experts who can trivially adapt to the new
configuration. Most people are not experts, could not properly configure these features (ex-
cept inasmuch as the default configuration of common-lisp-controller and/or cl-launch
might have been doing the right thing for some users), and yet will experience software that
“just works”, as configured by the system distributor, or by default.

Nevertheless, if you are a fan of ASDF-Binary-Locations, we provide a limited emulation
mode:

[Function]enable-asdf-binary-locations-compatibility &key
centralize-lisp-binaries default-toplevel-directory include-per-user-information
map-all-source-files source-to-target-mappings

This function will initialize the new asdf-output-translations facility in a
way that emulates the behavior of the old ASDF-Binary-Locations facility.
Where you would previously set global variables *centralize-lisp-binaries*,
default-toplevel-directory, *include-per-user-information*, *map-all-source-files*
or *source-to-target-mappings* you will now have to pass the same values as
keyword arguments to this function. Note however that as an extension the
:source-to-target-mappings keyword argument will accept any valid pathname
designator for asdf-output-translations instead of just strings and pathnames.

If you insist, you can also keep using the old ASDF-Binary-Locations (the one
available as an extension to load of top of ASDF, not the one built into a few old
versions of ASDF), but first you must disable asdf-output-translations with
(asdf:disable-output-translations), or you might experience “interesting” issues.

Also, note that output translation is enabled by default. To disable it, use
(asdf:disable-output-translations).

9.3 Configuration DSL

Here is the grammar of the SEXP DSL for asdf-output-translations configuration:

2 A CLEAN-OP would be a partial solution to this problem.

Chapter 9: Controlling where ASDF saves compiled files 45

;; A configuration is single SEXP starting with keyword :source-registry

;; followed by a list of directives.

CONFIGURATION := (:output-translations DIRECTIVE ...)

;; A directive is one of the following:

DIRECTIVE :=

;; INHERITANCE DIRECTIVE:

;; Your configuration expression MUST contain

;; exactly one of either of these:

:inherit-configuration |

;; splices inherited configuration (often specified last)

:ignore-inherited-configuration |

;; drop inherited configuration (specified anywhere)

;; forward compatibility directive (since ASDF 2.011.4), useful when

;; you want to use new configuration features but have to bootstrap a

;; the newer required ASDF from an older release that doesn’t have

;; said features:

:ignore-invalid-entries |

;; include a configuration file or directory

(:include PATHNAME-DESIGNATOR) |

;; enable global cache in ~/.common-lisp/cache/sbcl-1.0.45-linux-amd64/

;; or something.

:enable-user-cache |

;; Disable global cache. Map / to /

:disable-cache |

;; add a single directory to be scanned (no recursion)

(DIRECTORY-DESIGNATOR DIRECTORY-DESIGNATOR)

;; use a function to return the translation of a directory designator

(DIRECTORY-DESIGNATOR (:function TRANSLATION-FUNCTION))

DIRECTORY-DESIGNATOR :=

NIL | ; As source: skip this entry. As destination: same as source

T | ; as source matches anything, as destination

; maps pathname to itself.

ABSOLUTE-COMPONENT-DESIGNATOR ; same as in the source-registry language

TRANSLATION-FUNCTION :=

SYMBOL | ;; symbol naming a function that takes two arguments:

;; the pathname to be translated and the matching

;; DIRECTORY-DESIGNATOR

LAMBDA ;; A form which evaluates to a function taking two arguments:

;; the pathname to be translated and the matching

Chapter 9: Controlling where ASDF saves compiled files 46

;; DIRECTORY-DESIGNATOR

Relative components better be either relative or subdirectories of the path before them,
or bust.

The last component, if not a pathname, is notionally completed by /**/*.*. You can
specify more fine-grained patterns by using a pathname object as the last component e.g.
#p"some/path/**/foo*/bar-*.fasl"

You may use #+features to customize the configuration file.

The second designator of a mapping may be nil, indicating that files are not mapped
to anything but themselves (same as if the second designator was the same as the first).

When the first designator is t, the mapping always matches. When the first designator
starts with :root, the mapping matches any host and device. In either of these cases, if the
second designator isn’t t and doesn’t start with :root, then strings indicating the host and
pathname are somehow copied in the beginning of the directory component of the source
pathname before it is translated.

When the second designator is t, the mapping is the identity. When the second designa-
tor starts with :root, the mapping preserves the host and device of the original pathname.
Notably, this allows you to map files to a subdirectory of the whichever directory the
file is in. Though the syntax is not quite as easy to use as we’d like, you can have an
(source destination) mapping entry such as follows in your configuration file, or you may
use enable-asdf-binary-locations-compatibility with :centralize-lisp-binaries

nil which will do the same thing internally for you:

#.(let ((wild-subdir

(make-pathname :directory ’(:relative :wild-inferiors)))

(wild-file

(make-pathname :name :wild :version :wild :type :wild)))

‘((:root ,wild-subdir ,wild-file)

(:root ,wild-subdir :implementation ,wild-file)))

Starting with ASDF 2.011.4, you can use the simpler: ‘(:root (:root :**/

:implementation :*.*.*))

:include statements cause the search to recurse with the path specifications from the
file specified.

If the translate-pathname mechanism cannot achieve a desired translation, the user
may provide a function which provides the required algorithm. Such a translation function
is specified by supplying a list as the second directory-designator the first element of
which is the keyword :function, and the second element of which is either a symbol which
designates a function or a lambda expression. The function designated by the second
argument must take two arguments, the first being the pathname of the source file, the
second being the wildcard that was matched. When invoked, the function should return
the translated pathname.

An :inherit-configuration statement causes the search to recurse with the path spec-
ifications from the next configuration in the bulleted list. See Chapter 9 [Configurations],
page 43, above.

• :enable-user-cache is the same as (t :user-cache).

Chapter 9: Controlling where ASDF saves compiled files 47

• :disable-cache is the same as (t t).

• :user-cache uses the contents of variable asdf::*user-cache* which by default is
the same as using (:home ".cache" "common-lisp" :implementation).

9.4 Configuration Directories

Configuration directories consist of files, each of which contains a list of directives without
any enclosing (:output-translations ...) form. The files will be sorted by namestring
as if by string< and the lists of directives of these files with be concatenated in order. An
implicit :inherit-configuration will be included at the end of the list.

System-wide or per-user Common Lisp software distributions such as Debian packages
or some future version of clbuild may then include files such as /etc/common-lisp/asdf-
output-translations.conf.d/10-foo.conf or ~/.config/common-lisp/asdf-output-

translations.conf.d/10-foo.conf to easily and modularly register configuration infor-
mation about software being distributed.

The convention is that, for sorting purposes, the names of files in such a directory begin
with two digits that determine the order in which these entries will be read. Also, the type
of these files must be .conf, which not only simplifies the implementation by allowing for
more portable techniques in finding those files, but also makes it trivial to disable a file, by
renaming it to a different file type.

Directories may be included by specifying a directory pathname or namestring in an
:include directive, e.g.:

(:include "/foo/bar/")

9.5 Shell-friendly syntax for configuration

When considering environment variable ASDF_OUTPUT_TRANSLATIONS ASDF will skip to the
next configuration if it’s an empty string. It will READ the string as an SEXP in the DSL if
it begins with a paren (and it will be interpreted as a list of directories. Directories should
come by pairs, indicating a mapping directive. Entries are separated by a : (colon) on Unix
platforms (including cygwin), by a ; (semicolon) on other platforms (mainly, Windows).

The magic empty entry, if it comes in what would otherwise be the first entry in a
pair, indicates the splicing of inherited configuration. If it comes as the second entry in a
pair, it indicates that the directory specified first is to be left untranslated (which has the
same effect as if the directory had been repeated). Thus "/foo:/bar::/baz:" means that
things under directory /foo/ are translated to be under /bar/, then include the inherited
configuration, then specify that things under directory /baz/ are not translated.

9.6 Semantics of Output Translations

From the specified configuration, a list of mappings is extracted in a straightforward way:
mappings are collected in order, recursing through included or inherited configuration as
specified. To this list is prepended some implementation-specific mappings, and is appended
a global default.

The list is then compiled to a mapping table as follows: for each entry, in order, resolve
the first designated directory into an actual directory pathname for source locations. If
no mapping was specified yet for that location, resolve the second designated directory to

Chapter 9: Controlling where ASDF saves compiled files 48

an output location directory add a mapping to the table mapping the source location to
the output location, and add another mapping from the output location to itself (unless a
mapping already exists for the output location).

Based on the table, a mapping function is defined, mapping source pathnames to output
pathnames: given a source pathname, locate the longest matching prefix in the source
column of the mapping table. Replace that prefix by the corresponding output column in
the same row of the table, and return the result. If no match is found, return the source
pathname. (A global default mapping the filesystem root to itself may ensure that there
will always be a match, with same fall-through semantics).

9.7 Caching Results

The implementation is allowed to either eagerly compute the information from the config-
urations and file system, or to lazily re-compute it every time, or to cache any part of it as
it goes. To explicitly flush any information cached by the system, use the API below.

9.8 Output location API

The specified functions are exported from package ASDF.

[Function]initialize-output-translations &optional PARAMETER
will read the configuration and initialize all internal variables. You may extend or
override configuration from the environment and configuration files with the given
PARAMETER, which can be nil (no configuration override), or a SEXP (in the
SEXP DSL), a string (as in the string DSL), a pathname (of a file or directory with
configuration), or a symbol (fbound to function that when called returns one of the
above).

[Function]disable-output-translations
will initialize output translations in a way that maps every pathname to itself, effec-
tively disabling the output translation facility.

[Function]clear-output-translations
undoes any output translation configuration and clears any cache for the mapping
algorithm. You might want to call this function (or better, clear-configuration)
before you dump an image that would be resumed with a different configuration, and
return an empty configuration. Note that this does not include clearing information
about systems defined in the current image, only about where to look for systems not
yet defined.

[Function]ensure-output-translations &optional PARAMETER
checks whether output translations have been initialized. If not, initialize them with
the given PARAMETER. This function will be called before any attempt to operate
on a system.

[Function]apply-output-translations PATHNAME
Applies the configured output location translations to PATHNAME (calls
ensure-output-translations for the translations).

Chapter 9: Controlling where ASDF saves compiled files 49

Every time you use ASDF’s output-files, or anything that uses it (that may compile,
such as operate, perform, etc.), ensure-output-translations is called with parameter
nil, which the first time around causes your configuration to be read. If you change a con-
figuration file, you need to explicitly initialize-output-translations again, or maybe
clear-output-translations (or clear-configuration), which will cause the initializa-
tion to happen next time around.

9.9 Credits for output translations

Thanks a lot to Peter van Eynde for Common Lisp Controller and to Bjorn Lindberg and
Gary King for ASDF-Binary-Locations.

All bad design ideas and implementation bugs are to mine, not theirs. But so are good
design ideas and elegant implementation tricks.

— Francois-Rene Rideau fare@tunes.org

mailto:fare@tunes.org

Chapter 10: Error handling 50

10 Error handling

10.1 ASDF errors

If ASDF detects an incorrect system definition, it will signal a generalised instance of
SYSTEM-DEFINITION-ERROR.

Operations may go wrong (for example when source files contain errors). These are
signalled using generalised instances of OPERATION-ERROR.

10.2 Compilation error and warning handling

ASDF checks for warnings and errors when a file is compiled. The variables *compile-file-
warnings-behaviour* and *compile-file-errors-behavior* control the handling of any such
events. The valid values for these variables are :error, :warn, and :ignore.

Chapter 11: Miscellaneous additional functionality 51

11 Miscellaneous additional functionality

ASDF includes several additional features that are generally useful for system definition
and development.

11.1 Controlling file compilation

When declaring a component (system, module, file), you can specify a keyword argument
:around-compile function. If left unspecified (and therefore unbound), the value will be
inherited from the parent component if any, or with a default of nil if no value is specified
in any transitive parent.

The argument must be either nil, an fbound symbol, a lambda-expression (e.g. (lambda
(thunk) ...(funcall thunk ...) ...)) a function object (e.g. using #.#’ but that’s dis-
couraged because it prevents the introspection done by e.g. asdf-dependency-grovel), or
a string that when read yields a symbol or a lambda-expression. nil means the normal
compile-file function will be called. A non-nil value designates a function of one argument
that will be called with a function that will invoke compile-file* with various arguments;
the around-compile hook may supply additional keyword arguments to pass to that call to
compile-file*.

One notable argument that is heeded by compile-file* is :compile-check, a func-
tion called when the compilation was otherwise a success, with the same arguments as
compile-file; the function shall return true if the compilation and its resulting compiled
file respected all system-specific invariants, and false (nil) if it broke any of those invari-
ants; it may issue warnings or errors before it returns nil. (NB: The ability to pass such
extra flags is only available starting with ASDF 2.22.3.) This feature is notably exercised
by asdf-finalizers.

By using a string, you may reference a function, symbol and/or package that will only
be created later during the build, but isn’t yet present at the time the defsystem form is
evaluated. However, if your entire system is using such a hook, you may have to explicitly
override the hook with nil for all the modules and files that are compiled before the hook
is defined.

Using this hook, you may achieve such effects as: locally renaming packages, binding
readtables and other syntax-controlling variables, handling warnings and other condi-
tions, proclaiming consistent optimization settings, saving code coverage information, main-
taining meta-data about compilation timings, setting gensym counters and PRNG seeds
and other sources of non-determinism, overriding the source-location and/or timestamping
systems, checking that some compile-time side-effects were properly balanced, etc.

Note that there is no around-load hook. This is on purpose. Some implementations
such as ECL, GCL or MKCL link object files, which allows for no such hook. Other
implementations allow for concatenating FASL files, which doesn’t allow for such a hook
either. We aim to discourage something that’s not portable, and has some dubious impact
on performance and semantics even when it is possible. Things you might want to do with
an around-load hook are better done around-compile, though it may at times require some
creativity (see e.g. the package-renaming system).

Chapter 11: Miscellaneous additional functionality 52

11.2 Controlling source file character encoding

Starting with ASDF 2.21, components accept a :encoding option so authors may specify
which character encoding should be used to read and evaluate their source code. When
left unspecified, the encoding is inherited from the parent module or system; if no encoding
is specified at any point, or if nil is explicitly specified, an extensible protocol described
below is followed, that ultimately defaults to :utf-8 since ASDF 3.

The protocol to determine the encoding is to call the function detect-encoding, which
itself, if provided a valid file, calls the function specified by *encoding-detection-hook*,
or else defaults to the *default-encoding*. The *encoding-detection-hook* is by default
bound to function always-default-encoding, that always returns the contents of *default-
encoding*. *default-encoding* is bound to :utf-8 by default (before ASDF 3, the default
was :default).

Whichever encoding is returned must be a portable keyword, that will be translated
to an implementation-specific external-format designator by function encoding-external-

format, which itself simply calls the function specified *encoding-external-format-hook* ;
that function by default is default-encoding-external-format, that only recognizes
:utf-8 and :default, and translates the former to the implementation-dependent *utf-8-
external-format*, and the latter to itself (that itself is portable but has an implementation-
dependent meaning).

In other words, there now are plenty of extension hooks, but by default ASDF enforces
the previous de facto standard behavior of using :utf-8, independently from whatever
configuration the user may be using. Thus, system authors can now rely on :utf-8 being
used while compiling their files, even if the user is currently using :koi8-r or :euc-jp as
their interactive encoding. (Before ASDF 3, there was no such guarantee, :default was
used, and only plain ASCII was safe to include in source code.)

Some legacy implementations only support 8-bit characters, and some implementations
provide 8-bit only variants. On these implementations, the *utf-8-external-format* grace-
fully falls back to :default, and Unicode characters will be read as multi-character mo-
jibake. To detect such situations, UIOP will push the :asdf-unicode feature on imple-
mentations that support Unicode, and you can use reader-conditionalization to protect any
:encoding encoding statement, as in #+asdf-unicode :encoding #+asdf-unicode :utf-

8. We recommend that you avoid using unprotected :encoding specifications until after
ASDF 2.21 or later becomes widespread (in April 2014, only LispWorks lags with ASDF
2.019, and is scheduled to be updated later this year).

While it offers plenty of hooks for extension, and one such extension is available (see
asdf-encodings below), ASDF itself only recognizes one encoding beside :default, and
that is :utf-8, which is the de facto standard, already used by the vast majority of libraries
that use more than ASCII. On implementations that do not support unicode, the feature
:asdf-unicode is absent, and the :default external-format is used to read even source
files declared as :utf-8. On these implementations, non-ASCII characters intended to be
read as one CL character may thus end up being read as multiple CL characters. In most
cases, this shouldn’t affect the software’s semantics: comments will be skipped just the
same, strings with be read and printed with slightly different lengths, symbol names will be
accordingly longer, but none of it should matter. But a few systems that actually depend

Chapter 11: Miscellaneous additional functionality 53

on unicode characters may fail to work properly, or may work in a subtly different way. See
for instance lambda-reader.

We invite you to embrace UTF-8 as the encoding for non-ASCII characters starting to-
day, even without any explicit specification in your .asd files. Indeed, on some implementa-
tions and configurations, UTF-8 is already the :default, and loading your code may cause
errors if it is encoded in anything but UTF-8. Therefore, even with the legacy behavior, non-
UTF-8 is guaranteed to break for some users, whereas UTF-8 is pretty much guaranteed not
to break anywhere (provided you do not use a BOM), although it might be read incorrectly
on some implementations. :utf-8 has been the default value of *default-encoding* since
ASDF 3.

If you need non-standard character encodings for your source code, use the extension
system asdf-encodings, by specifying :defsystem-depends-on (:asdf-encodings) in
your defsystem. This extension system will register support for more encodings using
the *encoding-external-format-hook* facility, so you can explicitly specify :encoding

:latin1 in your .asd file. Using the *encoding-detection-hook* it will also eventually
implement some autodetection of a file’s encoding from an emacs-style -*- mode: lisp ;

coding: latin1 -*- declaration, or otherwise based on an analysis of octet patterns in
the file. At this point, asdf-encoding only supports the encodings that are supported as
part of your implementation. Since the list varies depending on implementations, we still
recommend you use :utf-8 everywhere, which is the most portable (next to it is :latin1).

Recent versions of Quicklisp include asdf-encodings; if you’re not using it, you may
get this extension using git: git clone git://common-lisp.net/projects/asdf/asdf-

encodings.git or git clone ssh://common-lisp.net/project/asdf/git/asdf-

encodings.git. You can also browse the repository on http: / /common-lisp .net /

gitweb?p=projects/asdf/asdf-encodings.git.

When you use asdf-encodings, any .asd file loaded will use the autodetection algorithm
to determine its encoding. If you depend on this detection happening, you should explicitly
load asdf-encodings early in your build. Note that :defsystem-depends-on cannot be
used here: by the time the :defsystem-depends-on is loaded, the enclosing defsystem

form has already been read.

In practice, this means that the *default-encoding* is usually used for .asd files.
Currently, this defaults to :utf-8, and you should be safe using Unicode characters in those
files. This might matter, for instance, in meta-data about author’s names. Otherwise, the
main data in these files is component (path)names, and we don’t recommend using non-
ASCII characters for these, for the result probably isn’t very portable.

11.3 Miscellaneous Functions

These functions are exported by ASDF for your convenience.

[Function]system-relative-pathname system name &key type
It’s often handy to locate a file relative to some system. The system-relative-

pathname function meets this need.

It takes two mandatory arguments system and name and a keyword argument type:
system is name of a system, whereas name and optionally type specify a relative
pathname, interpreted like a component pathname specifier by coerce-pathname.
See Section 6.3 [Pathname specifiers], page 11.

http://common-lisp.net/gitweb?p=projects/asdf/asdf-encodings.git
http://common-lisp.net/gitweb?p=projects/asdf/asdf-encodings.git

Chapter 11: Miscellaneous additional functionality 54

It returns a pathname built from the location of the system’s source directory and
the relative pathname. For example:

> (asdf:system-relative-pathname ’cl-ppcre "regex.data")

#P"/repository/other/cl-ppcre/regex.data"

[Function]system-source-directory system-designator
ASDF does not provide a turnkey solution for locating data (or other miscellaneous)
files that are distributed together with the source code of a system. Programmers can
use system-source-directory to find such files. Returns a pathname object. The
system-designator may be a string, symbol, or ASDF system object.

[Function]clear-system system-designator
It is sometimes useful to force recompilation of a previously loaded system. For these
cases, (asdf:clear-system :foo) will remove the system from the table of currently
loaded systems: the next time the system foo or one that depends on it is re-loaded,
foo will be loaded again.1

Note that this does not and cannot undo the previous loading of the system. Common
Lisp has no provision for such an operation, and its reliance on irreversible side-effects
to global data structures makes such a thing impossible in the general case. If the
software being re-loaded is not conceived with hot upgrade in mind, re-loading may
cause many errors, warnings or subtle silent problems, as packages, generic function
signatures, structures, types, macros, constants, etc. are being redefined incompati-
bly. It is up to the user to make sure that reloading is possible and has the desired
effect. In some cases, extreme measures such as recursively deleting packages, un-
registering symbols, defining methods on update-instance-for-redefined-class

and much more are necessary for reloading to happen smoothly. ASDF itself goes
to extensive effort to make a hot upgrade possible with respect to its own code.
If you want, you can reuse some of its utilities such as uiop:define-package and
uiop:with-upgradability, and get inspiration (or disinspiration) from what it does
in header.lisp and upgrade.lisp.

[Function]register-preloaded-system name &rest keys
A system with name name, created by make-instance with extra keys keys (e.g.
:version), is registered as preloaded. That is, its code has already been loaded into
the current image, and if at some point some other system :depends-on it yet no
source code is found, it is considered as already provided, and ASDF will not raise a
missing-component error.

This function is particularly useful if you distribute your code as fasls with either
compile-bundle-op or monolithic-compile-bundle-op, and want to register sys-
tems so that dependencies will work uniformly whether you’re using your software
from source or from fasl.

[Function]run-shell-command control-string &rest args
This function is obsolete and present only for the sake of backwards-compatibility: “If
it’s not backwards, it’s not compatible”. We strongly discourage its use. Its current
behavior is only well-defined on Unix platforms (which include MacOS X and cygwin).

1 Alternatively, you could touch foo.asd or remove the corresponding fasls from the output file cache.

Chapter 11: Miscellaneous additional functionality 55

On Windows, anything goes. The following documentation is only for the purpose of
your migrating away from it in a way that preserves semantics.

Instead we recommend the use run-program, described in the next section, and avail-
able as part of ASDF since ASDF 3.

run-shell-command takes as arguments a format control-string and arguments
to be passed to format after this control-string to produce a string. This string is
a command that will be evaluated with a POSIX shell if possible; yet, on Windows,
some implementations will use CMD.EXE, while others (like SBCL) will make an
attempt at invoking a POSIX shell (and fail if it is not present).

11.4 Some Utility Functions

The below functions are not exported by ASDF itself, but by UIOP, available since ASDF 3.
Some of them have precursors in ASDF 2, but we recommend you rely on ASDF 3 for active
developments. UIOP provides many, many more utility functions, and we recommend you
read its README and sources for more information.

[Function]parse-unix-namestring name &key type defaults dot-dot
ensure-directory &allow-other-keys

Coerce NAME into a PATHNAME using standard Unix syntax.

Unix syntax is used whether or not the underlying system is Unix; on non-Unix
systems it is only usable for relative pathnames. In order to manipulate relative
pathnames portably, it is crucial to possess a portable pathname syntax independent
of the underlying OS. This is what parse-unix-namestring provides, and why we
use it in ASDF.

When given a pathname object, just return it untouched. When given nil, just return
nil. When given a non-null symbol, first downcase its name and treat it as a string.
When given a string, portably decompose it into a pathname as below.

#\/ separates directory components.

The last #\/-separated substring is interpreted as follows: 1- If type is :directory
or ensure-directory is true, the string is made the last directory component, and its
name and type are nil. if the string is empty, it’s the empty pathname with all slots
nil. 2- If type is nil, the substring is a file-namestring, and its name and type are
separated by split-name-type. 3- If type is a string, it is the given type, and the
whole string is the name.

Directory components with an empty name the name . are removed. Any directory
named .. is read as dot-dot, which must be one of :back or :up and defaults to
:back.

host, device and version components are taken from defaults, which itself defaults
to *nil-pathname*. *nil-pathname* is also used if defaults is nil. No host or device
can be specified in the string itself, which makes it unsuitable for absolute pathnames
outside Unix.

For relative pathnames, these components (and hence the defaults) won’t matter if
you use merge-pathnames* but will matter if you use merge-pathnames, which is an
important reason to always use merge-pathnames*.

Chapter 11: Miscellaneous additional functionality 56

Arbitrary keys are accepted, and the parse result is passed to ensure-pathname

with those keys, removing type, defaults and dot-dot. When you’re manipulating
pathnames that are supposed to make sense portably even though the OS may not be
Unixish, we recommend you use :want-relative t so that parse-unix-namestring
will throw an error if the pathname is absolute.

[Function]merge-pathnames* specified &optional defaults
This function is a replacement for merge-pathnames that uses the host and device
from the defaults rather than the specified pathname when the latter is a relative
pathname. This allows ASDF and its users to create and use relative pathnames
without having to know beforehand what are the host and device of the absolute
pathnames they are relative to.

[Function]subpathname pathname subpath &key type
This function takes a pathname and a subpath and a type. If subpath is already a
pathname object (not namestring), and is an absolute pathname at that, it is returned
unchanged; otherwise, subpath is turned into a relative pathname with given type as
per parse-unix-namestring with :want-relative t :type type, then it is merged
with the pathname-directory-pathname of pathname, as per merge-pathnames*.

We strongly encourage the use of this function for portably resolving relative path-
names in your code base.

[Function]subpathname* pathname subpath &key type
This function returns nil if the base pathname is nil, otherwise acts like
subpathname.

[Function]run-program command &key ignore-error-status force-shell input output
error-output if-input-does-not-exist if-output-exists if-error-output-exists
element-type external-format &allow-other-keys

run-program takes a command argument that is either a list of a program name or
path and its arguments, or a string to be executed by a shell. It spawns the command,
waits for it to return, verifies that it exited cleanly (unless told not too below), and
optionally captures and processes its output. It accepts many keyword arguments to
configure its behavior.

run-program returns three values: the first for the output, the second for the error-
output, and the third for the return value. (Beware that before ASDF 3.0.2.11, it
didn’t handle input or error-output, and returned only one value, the one for the
output if any handler was specified, or else the exit code; please upgrade ASDF, or
at least UIOP, to rely on the new enhanced behavior.)

output is its most important argument; it specifies how the output is captured and
processed. If it is nil, then the output is redirected to the null device, that will discard
it. If it is :interactive, then it is inherited from the current process (beware: this
may be different from your *standard-output*, and under SLIME will be on your
inferior-lisp buffer). If it is t, output goes to your current *standard-output*
stream. Otherwise, output should be a value that is a suitable first argument to
slurp-input-stream (see below), or a list of such a value and keyword arguments.
In this case, run-program will create a temporary stream for the program output; the

Chapter 11: Miscellaneous additional functionality 57

program output, in that stream, will be processed by a call to slurp-input-stream,
using output as the first argument (or if it’s a list the first element of output and
the rest as keywords). The primary value resulting from that call (or nil if no call
was needed) will be the first value returned by run-program. E.g., using :output

:string will have it return the entire output stream as a string. And using :output

’(:string :stripped t) will have it return the same string stripped of any ending
newline.

error-output is similar to output, except that the resulting value is returned as the
second value of run-program. t designates the *error-output*. Also :output means
redirecting the error output to the output stream, in which case nil is returned.

input is similar to output, except that vomit-output-stream is used, no value is
returned, and t designates the *standard-input*.

element-type and external-format are passed on to your Lisp implementation,
when applicable, for creation of the output stream.

One and only one of the stream slurping or vomiting may or may not happen in
parallel in parallel with the subprocess, depending on options and implementation,
and with priority being given to output processing. Other streams are completely
produced or consumed before or after the subprocess is spawned, using temporary
files.

force-shell forces evaluation of the command through a shell, even if it was passed
as a list rather than a string. If a shell is used, it is /bin/sh on Unix or CMD.EXE on
Windows, except on implementations that (erroneously, IMNSHO) insist on consult-
ing $SHELL like clisp.

ignore-error-status causes run-program to not raise an error if the spawned pro-
gram exits in error. Following POSIX convention, an error is anything but a normal
exit with status code zero. By default, an error of type subprocess-error is raised
in this case.

run-program works on all platforms supported by ASDF, except Genera. See the
source code for more documentation.

[Function]slurp-input-stream processor input-stream &key
slurp-input-stream is a generic function of two arguments, a target object and an
input stream, and accepting keyword arguments. Predefined methods based on the
target object are as follows:

• If the object is a function, the function is called with the stream as argument.

• If the object is a cons, its first element is applied to its rest appended by a list
of the input stream.

• If the object is an output stream, the contents of the input stream are copied to
it. If the linewise keyword argument is provided, copying happens line by line,
and an optional prefix is printed before each line. Otherwise, copying happen
based on a buffer of size buffer-size, using the specified element-type.

• If the object is ’string or :string, the content is captured into a string. Ac-
cepted keywords include the element-type and a flag stripped, which when true
causes any single line ending to be removed as per uiop:stripln.

Chapter 11: Miscellaneous additional functionality 58

• If the object is :lines, the content is captured as a list of strings, one per line,
without line ending. If the count keyword argument is provided, it is a maximum
count of lines to be read.

• If the object is :line, the content is captured as with :lines above, and then its
sub-object is extracted with the at argument, which defaults to 0, extracting the
first line. A number will extract the corresponding line. See the documentation
for uiop:access-at.

• If the object is :forms, the content is captured as a list of S-expressions, as read
by the Lisp reader. If the count argument is provided, it is a maximum count
of lines to be read. We recommend you control the syntax with such macro as
uiop:with-safe-io-syntax.

• If the object is :form, the content is captured as with :forms above, and then its
sub-object is extracted with the at argument, which defaults to 0, extracting the
first form. A number will extract the corresponding form. See the documentation
for uiop:access-at. We recommend you control the syntax with such macro as
uiop:with-safe-io-syntax.

Chapter 12: Getting the latest version 59

12 Getting the latest version

Decide which version you want. The master branch is where development happens; its HEAD
is usually OK, including the latest fixes and portability tweaks, but an occasional regression
may happen despite our (limited) test suite.

The release branch is what cautious people should be using; it has usually been tested
more, and releases are cut at a point where there isn’t any known unresolved issue.

You may get the ASDF source repository using git: git clone git://common-

lisp.net/projects/asdf/asdf.git

You will find the above referenced tags in this repository. You can also browse the
repository on http://common-lisp.net/gitweb?p=projects/asdf/asdf.git.

Discussion of ASDF development is conducted on the mailing list asdf-devel@common-
lisp.net. http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

http://common-lisp.net/gitweb?p=projects/asdf/asdf.git
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

Chapter 13: FAQ 60

13 FAQ

13.1 “Where do I report a bug?”

ASDF bugs are tracked on launchpad: https://launchpad.net/asdf.

If you’re unsure about whether something is a bug, or for general discussion, use the
asdf-devel mailing list

13.2 “What has changed between ASDF 1, ASDF 2 and
ASDF 3?”

We released ASDF 2.000 on May 31st 2010, and ASDF 3.0.0 on May 15th 2013. Releases of
ASDF 2 and later have since then been included in all actively maintained CL implemen-
tations that used to bundle ASDF 1, plus some implementations that previously did not.
ASDF has been made to work with all actively maintained CL implementations and even a
few implementations that are not actively maintained. See Chapter 13 [“What has changed
between ASDF 1 and ASDF 2?”], page 60. Furthermore, it is possible to upgrade from
ASDF 1 to ASDF 2 or ASDF 3 on the fly (though we recommend instead upgrading your
implementation or its ASDF module). For this reason, we have stopped supporting ASDF 1
and ASDF 2. If you are using ASDF 1 or ASDF 2 and are experiencing any kind of issues or
limitations, we recommend you upgrade to ASDF 3 — and we explain how to do that. See
Chapter 3 [Loading ASDF], page 3. (In the context of compatibility requirements, ASDF
2.27, released on Feb 1st 2013, and further 2.x releases up to 2.33, count as pre-releases of
ASDF 3, and define the :asdf3 feature; still, please use the latest release). Release ASDF
3.1.2 and later also define the :asdf3.1 feature.

13.2.1 What are ASDF 1, ASDF 2, and ASDF 3?

ASDF 1 refers to any release earlier than 1.369 or so (from August 2001 to October 2009),
and to any development revision earlier than 2.000 (May 2010). If your copy of ASDF
doesn’t even contain version information, it’s an old ASDF 1. Revisions between 1.656 and
1.728 may count as development releases for ASDF 2.

ASDF 2 refers to releases from 2.000 (May 31st 2010) to 2.26 (Oct 30 2012), and any
development revision newer than ASDF 1 and older than 2.27 (Feb 1 2013).

ASDF 3 refers to releases from 2.27 (Feb 1 2013) to 2.33 and 3.0.0 onward (May 15
2013). 2.27 to 2.33 count as pre-releases to ASDF 3.

13.2.2 How do I detect the ASDF version?

All releases of ASDF push :asdf onto *features*. Releases starting with ASDF 2
push :asdf2 onto *features*. Releases starting with ASDF 3 (including 2.27 and later
pre-releases) push :asdf3 onto *features*. Furthermore, releases starting with ASDF
3.1.2 (May 2014), though they count as ASDF 3, include enough progress that they push
:asdf3.1 onto *features*. You may depend on the presence or absence of these features
to write code that takes advantage of recent ASDF functionality but still works on older
versions, or at least detects the old version and signals an error.

https://launchpad.net/asdf
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

Chapter 13: FAQ 61

Additionally, all releases starting with ASDF 2 define a function (asdf:asdf-version)

you may use to query the version. All releases starting with 2.013 display the version
number prominently on the second line of the asdf.lisp source file.

If you are experiencing problems or limitations of any sort with ASDF 1 or ASDF 2, we
recommend that you should upgrade to the latest release, be it ASDF 3 or other.

13.2.3 ASDF can portably name files in subdirectories

Common Lisp namestrings are not portable, except maybe for logical pathname
namestrings, that themselves have various limitations and require a lot of setup that is
itself ultimately non-portable.

In ASDF 1, the only portable ways to refer to pathnames inside systems and components
were very awkward, using #.(make-pathname ...) and #.(merge-pathnames ...). Even
the above were themselves were inadequate in the general case due to host and device issues,
unless horribly complex patterns were used. Plenty of simple cases that looked portable
actually weren’t, leading to much confusion and greavance.

ASDF 2 implements its own portable syntax for strings as pathname specifiers. Naming
files within a system definition becomes easy and portable again. See Chapter 11 [Miscel-
laneous additional functionality], page 51, merge-pathnames*, coerce-pathname.

On the other hand, there are places where systems used to accept namestrings
where you must now use an explicit pathname object: (defsystem ... :pathname

"LOGICAL-HOST:PATH;TO;SYSTEM;" ...) must now be written with the #p syntax:
(defsystem ... :pathname #p"LOGICAL-HOST:PATH;TO;SYSTEM;" ...)

See Section 6.3 [Pathname specifiers], page 11.

13.2.4 Output translations

A popular feature added to ASDF was output pathname translation: asdf-binary-

locations, common-lisp-controller, cl-launch and other hacks were all implementing
it in ways both mutually incompatible and difficult to configure.

Output pathname translation is essential to share source directories of portable sys-
tems across multiple implementations or variants thereof, or source directories of shared
installations of systems across multiple users, or combinations of the above.

In ASDF 2, a standard mechanism is provided for that, asdf-output-translations,
with sensible defaults, adequate configuration languages, a coherent set of configuration
files and hooks, and support for non-Unix platforms.

See Chapter 9 [Controlling where ASDF saves compiled files], page 43.

13.2.5 Source Registry Configuration

Configuring ASDF used to require special magic to be applied just at the right moment,
between the moment ASDF is loaded and the moment it is used, in a way that is specific
to the user, the implementation he is using and the application he is building.

This made for awkward configuration files and startup scripts that could not be shared
between users, managed by administrators or packaged by distributions.

ASDF 2 provides a well-documented way to configure ASDF, with sensible defaults,
adequate configuration languages, and a coherent set of configuration files and hooks.

Chapter 13: FAQ 62

We believe it’s a vast improvement because it decouples application distribution from
library distribution. The application writer can avoid thinking where the libraries are, and
the library distributor (dpkg, clbuild, advanced user, etc.) can configure them once and for
every application. Yet settings can be easily overridden where needed, so whoever needs
control has exactly as much as required.

At the same time, ASDF 2 remains compatible with the old magic you may have in your
build scripts (using *central-registry* and *system-definition-search-functions*)
to tailor the ASDF configuration to your build automation needs, and also allows for new
magic, simpler and more powerful magic.

See Chapter 8 [Controlling where ASDF searches for systems], page 34.

13.2.6 Usual operations are made easier to the user

In ASDF 1, you had to use the awkward syntax (asdf:oos ’asdf:load-op :foo) to load
a system, and similarly for compile-op, test-op.

In ASDF 2, you can use shortcuts for the usual operations: (asdf:load-system :foo),
and similarly for compile-system, test-system.

13.2.7 Many bugs have been fixed

The following issues and many others have been fixed:

• The infamous TRAVERSE function has been revamped completely between ASDF 1
and ASDF 2, with many bugs squashed. In particular, dependencies were not correctly
propagated across modules but now are. It has been completely rewritten many times
over between ASDF 2.000 and ASDF 3, with fundamental issues in the original model
being fixed. Timestamps were not propagated at all, and now are. The internal model of
how actions depend on each other is now both consistent and complete. The :version
and the :force (system1 .. systemN) feature have been fixed.

• Performance has been notably improved for large systems (say with thousands of com-
ponents) by using hash-tables instead of linear search, and linear-time list accumulation
instead of cubic time recursive append, for an overall O(n) complexity vs O(n^4).

• Many features used to not be portable, especially where pathnames were involved.
Windows support was notably quirky because of such non-portability.

• The internal test suite used to massively fail on many implementations. While still
incomplete, it now fully passes on all implementations supported by the test suite,
though some tests are commented out on a few implementations.

• Support was lacking for some implementations. ABCL and GCL were notably wholly
broken. ECL extensions were not integrated with ASDF release.

• The documentation was grossly out of date.

13.2.8 ASDF itself is versioned

Between new features, old bugs fixed, and new bugs introduced, there were various releases
of ASDF in the wild, and no simple way to check which release had which feature set.
People using or writing systems had to either make worst-case assumptions as to what
features were available and worked, or take great pains to have the correct version of ASDF
installed.

Chapter 13: FAQ 63

With ASDF 2, we provide a new stable set of working features that everyone can rely
on from now on. Use #+asdf2 to detect presence of ASDF 2, (asdf:version-satisfies
(asdf:asdf-version) "2.345.67") to check the availability of a version no earlier than
required.

13.2.9 ASDF can be upgraded

When an old version of ASDF was loaded, it was very hard to upgrade ASDF in your
current image without breaking everything. Instead you had to exit the Lisp process and
somehow arrange to start a new one from a simpler image. Something that can’t be done
from within Lisp, making automation of it difficult, which compounded with difficulty in
configuration, made the task quite hard. Yet as we saw before, the task would have been
required to not have to live with the worst case or non-portable subset of ASDF features.

With ASDF 2, it is easy to upgrade from ASDF 2 to later versions from within Lisp,
and not too hard to upgrade from ASDF 1 to ASDF 2 from within Lisp. We support hot
upgrade of ASDF and any breakage is a bug that we will do our best to fix. There are still
limitations on upgrade, though, most notably the fact that after you upgrade ASDF, you
must also reload or upgrade all ASDF extensions.

13.2.10 Decoupled release cycle

When vendors were releasing their Lisp implementations with ASDF, they had to basically
never change version because neither upgrade nor downgrade was possible without breaking
something for someone, and no obvious upgrade path was visible and recommendable.

With ASDF 2, upgrade is possible, easy and can be recommended. This means that
vendors can safely ship a recent version of ASDF, confident that if a user isn’t fully satisfied,
he can easily upgrade ASDF and deal with a supported recent version of it. This means
that release cycles will be causally decoupled, the practical consequence of which will mean
faster convergence towards the latest version for everyone.

13.2.11 Pitfalls of the transition to ASDF 2

The main pitfalls in upgrading to ASDF 2 seem to be related to the output translation
mechanism.

• Output translations is enabled by default. This may surprise some users, most of them
in pleasant way (we hope), a few of them in an unpleasant way. It is trivial to disable
output translations. See Chapter 13 [“How can I wholly disable the compiler output
cache?”], page 60.

• Some systems in the large have been known not to play well with output translations.
They were relatively easy to fix. Once again, it is also easy to disable output transla-
tions, or to override its configuration.

• The new ASDF output translations are incompatible with ASDF-Binary-Locations.
They replace A-B-L, and there is compatibility mode to emulate your previous A-B-L
configuration. See enable-asdf-binary-locations-compatibility in see Chapter 9
[Backward Compatibility], page 43. But thou shalt not load ABL on top of ASDF 2.

Other issues include the following:

• ASDF pathname designators are now specified in places where they were unspeci-
fied, and a few small adjustments have to be made to some non-portable defsystems.

Chapter 13: FAQ 64

Notably, in the :pathname argument to a defsystem and its components, a logical
pathname (or implementation-dependent hierarchical pathname) must now be spec-
ified with #p syntax where the namestring might have previously sufficed; moreover
when evaluation is desired #. must be used, where it wasn’t necessary in the toplevel
:pathname argument (but necessary in other :pathname arguments).

• There is a slight performance bug, notably on SBCL, when initially searching for
asd files, the implicit (directory "/configured/path/**/*.asd") for every config-
ured path (:tree "/configured/path/") in your source-registry configuration can
cause a slight pause. Try to (time (asdf:initialize-source-registry)) to see how
bad it is or isn’t on your system. If you insist on not having this pause, you can avoid
the pause by overriding the default source-registry configuration and not use any deep
:tree entry but only :directory entries or shallow :tree entries. Or you can fix your
implementation to not be quite that slow when recursing through directories. Update:
This performance bug fixed the hard way in 2.010.

• On Windows, only LispWorks supports proper default configuration pathnames based
on the Windows registry. Other implementations make do with environment variables,
that you may have to define yourself if you’re using an older version of Windows.
Windows support is somewhat less tested than Unix support. Please help report and
fix bugs. Update: As of ASDF 2.21, all implementations should now use the same
proper default configuration pathnames and they should actually work, though they
haven’t all been tested.

• The mechanism by which one customizes a system so that Lisp files may use a
different extension from the default .lisp has changed. Previously, the pathname
for a component was lazily computed when operating on a system, and you would
(defmethod source-file-type ((component cl-source-file) (system (eql

(find-system ’foo)))) (declare (ignorable component system)) "lis"). Now,
the pathname for a component is eagerly computed when defining the system,
and instead you will (defclass cl-source-file.lis (cl-source-file) ((type

:initform "lis"))) and use :default-component-class cl-source-file.lis as
argument to defsystem, as detailed in a see Chapter 13 [FAQ], page 60 below.

13.3 Issues with installing the proper version of ASDF

13.3.1 “My Common Lisp implementation comes with an
outdated version of ASDF. What to do?”

We recommend you upgrade ASDF. See Chapter 3 [Upgrading ASDF], page 3.

If this does not work, it is a bug, and you should report it. See Chapter 13 [Where do I
report a bug], page 60. In the meantime, you can load asdf.lisp directly. See Chapter 3
[Loading ASDF], page 3.

13.3.2 “I’m a Common Lisp implementation vendor. When and
how should I upgrade ASDF?”

Since ASDF 2, it should always be a good time to upgrade to a recent version of ASDF. You
may consult with the maintainer for which specific version they recommend, but the latest
release should be correct. Though we do try to test ASDF releases against all implemen-
tations that we can, we may not be testing against all variants of your implementation,

Chapter 13: FAQ 65

and we may not be running enough tests; we trust you to thoroughly test it with your own
implementation before you release it. If there are any issues with the current release, it’s a
bug that you should report upstream and that we will fix ASAP.

As to how to include ASDF, we recommend the following:

• If ASDF isn’t loaded yet, then (require "asdf") should load the version of ASDF
that is bundled with your system. If possible so should (require "ASDF"). You may
have it load some other version configured by the user, if you allow such configuration.

• If your system provides a mechanism to hook into CL:REQUIRE, then it would be nice
to add ASDF to this hook the same way that ABCL, CCL, CLISP, CMUCL, ECL,
SBCL and SCL do it. Please send us appropriate code to this end.

• You may, like SBCL since 1.1.13 or MKCL since 1.1.9, have ASDF create bundle
FASLs that are provided as modules by your Lisp distribution. You may also, but
we don’t recommend that anymore, have ASDF like SBCL up until 1.1.12 be implic-
itly used when requiring modules that are provided by your Lisp distribution; if you
do, you should add them in the beginning of both wrapping-source-registry and
wrapping-output-translations.

• If you have magic systems as above, like SBCL used to do, then we explicitly ask you to
NOT distribute asdf.asd as part of those magic systems. You should still include the
file asdf.lisp in your source distribution and precompile it in your binary distribution,
but asdf.asd if included at all, should be secluded from the magic systems, in a
separate file hierarchy. Alternatively, you may provide the system after renaming it
and its .asd file to e.g. asdf-ecl and asdf-ecl.asd, or sb-asdf and sb-asdf.asd.
Indeed, if you made asdf.asd a magic system, then users would no longer be able to
upgrade ASDF using ASDF itself to some version of their preference that they maintain
independently from your Lisp distribution.

• If you do not have any such magic systems, or have other non-magic systems that
you want to bundle with your implementation, then you may add them to the
wrapping-source-registry, and you are welcome to include asdf.asd amongst
them. Non-magic systems should be at the back of the wrapping-source-registry

while magic systems are at the front. If they are precompiled, they should also be in
the wrapping-output-translations.

• Since ASDF 3, the library UIOP comes transcluded in ASDF. But if you want to be
nice to users who care for UIOP but not for ASDF, you may package UIOP separately,
so that one may (require "uiop") and not load ASDF, or one may (require "asdf")

which would implicitly require and load the former.

• Please send us upstream any patches you make to ASDF itself, so we can merge them
back in for the benefit of your users when they upgrade to the upstream version.

13.4 Issues with configuring ASDF

13.4.1 “How can I customize where fasl files are stored?”

See Chapter 9 [Controlling where ASDF saves compiled files], page 43.

Note that in the past there was an add-on to ASDF called ASDF-binary-locations,
developed by Gary King. That add-on has been merged into ASDF proper, then superseded
by the asdf-output-translations facility.

Chapter 13: FAQ 66

Note that use of asdf-output-translations can interfere with one aspect of your
systems — if your system uses *load-truename* to find files (e.g., if you have some data
files stored with your program), then the relocation that this ASDF customization performs
is likely to interfere. Use asdf:system-relative-pathname to locate a file in the source
directory of some system, and use asdf:apply-output-translations to locate a file whose
pathname has been translated by the facility.

13.4.2 “How can I wholly disable the compiler output cache?”

To permanently disable the compiler output cache for all future runs of ASDF, you can:

mkdir -p ~/.config/common-lisp/asdf-output-translations.conf.d/

echo ’:disable-cache’ > ~/.config/common-lisp/asdf-output-translations.conf.d/99-disable-cache.conf

This assumes that you didn’t otherwise configure the ASDF files (if you did, edit them
again), and don’t somehow override the configuration at runtime with a shell variable (see
below) or some other runtime command (e.g. some call to asdf:initialize-output-

translations).

To disable the compiler output cache in Lisp processes run by your current shell, try
(assuming bash or zsh) (on Unix and cygwin only):

export ASDF_OUTPUT_TRANSLATIONS=/:

To disable the compiler output cache just in the current Lisp process, use (after loading
ASDF but before using it):

(asdf:disable-output-translations)

Note that this does NOT belong in a .asd file. Please do not tamper with ASDF
configuration from a .asd file, and only do this from your personal configuration or build
scripts.

13.5 Issues with using and extending ASDF to define
systems

13.5.1 “How can I cater for unit-testing in my system?”

ASDF provides a predefined test operation, test-op. See Section 7.1.1 [Predefined opera-
tions of ASDF], page 21. The test operation, however, is largely left to the system definer
to specify. test-op has been a topic of considerable discussion on the asdf-devel mailing
list, and on the launchpad bug-tracker. We provide some guidelines in the discussion of
test-op.

13.5.2 “How can I cater for documentation generation in my
system?”

Various ASDF extensions provide some kind of doc-op operation. See also https://bugs.

launchpad.net/asdf/+bug/479470.

13.5.3 “How can I maintain non-Lisp (e.g. C) source files?”

See cffi’s cffi-grovel.

http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel
https://launchpad.net/asdf
https://bugs.launchpad.net/asdf/+bug/479470
https://bugs.launchpad.net/asdf/+bug/479470

Chapter 13: FAQ 67

13.5.4 “I want to put my module’s files at the top level. How do I
do this?”

By default, the files contained in an asdf module go in a subdirectory with the same name
as the module. However, this can be overridden by adding a :pathname "" argument to the
module description. For example, here is how it could be done in the spatial-trees ASDF
system definition for ASDF 2:

(asdf:defsystem :spatial-trees

:components

((:module base

:pathname ""

:components

((:file "package")

(:file "basedefs" :depends-on ("package"))

(:file "rectangles" :depends-on ("package"))))

(:module tree-impls

:depends-on (base)

:pathname ""

:components

((:file "r-trees")

(:file "greene-trees" :depends-on ("r-trees"))

(:file "rstar-trees" :depends-on ("r-trees"))

(:file "rplus-trees" :depends-on ("r-trees"))

(:file "x-trees" :depends-on ("r-trees" "rstar-trees"))))

(:module viz

:depends-on (base)

:pathname ""

:components

((:static-file "spatial-tree-viz.lisp")))

(:module tests

:depends-on (base)

:pathname ""

:components

((:static-file "spatial-tree-test.lisp")))

(:static-file "LICENCE")

(:static-file "TODO")))

All of the files in the tree-implsmodule are at the top level, instead of in a tree-impls/
subdirectory.

Note that the argument to :pathname can be either a pathname object or a string.
A pathname object can be constructed with the #p"foo/bar/" syntax, but this is dis-
couraged because the results of parsing a namestring are not portable. A pathname
can only be portably constructed with such syntax as #.(make-pathname :directory

’(:relative "foo" "bar")), and similarly the current directory can only be portably spec-
ified as #.(make-pathname :directory ’(:relative)). However, as of ASDF 2, you can
portably use a string to denote a pathname. The string will be parsed as a /-separated
path from the current directory, such that the empty string "" denotes the current direc-
tory, and "foo/bar" (no trailing / required in the case of modules) portably denotes the
same subdirectory as above. When files are specified, the last /-separated component is

Chapter 13: FAQ 68

interpreted either as the name component of a pathname (if the component class specifies
a pathname type), or as a name component plus optional dot-separated type component (if
the component class doesn’t specifies a pathname type).

13.5.5 How do I create a system definition where all the source
files have a .cl extension?

Starting with ASDF 2.014.14, you may just pass the builtin class cl-source-file.cl as
the :default-component-class argument to defsystem:

(defsystem my-cl-system

:default-component-class cl-source-file.cl

...)

Another builtin class cl-source-file.lsp is offered for files ending in .lsp.

If you want to use a different extension for which ASDF doesn’t provide builtin support,
or want to support versions of ASDF earlier than 2.014.14 (but later than 2.000), you can
define a class as follows:

;; Prologue: make sure we’re using a sane package.

(defpackage :my-asdf-extension

(:use :asdf :common-lisp)

(:export #:cl-source-file.lis))

(in-package :my-asdf-extension)

(defclass cl-source-file.lis (cl-source-file)

((type :initform "lis")))

Then you can use it as follows:

(defsystem my-cl-system

:default-component-class my-asdf-extension:cl-source-file.lis

...)

Of course, if you’re in the same package, e.g. in the same file, you won’t need to use the
package qualifier before cl-source-file.lis. Actually, if all you’re doing is defining this
class and using it in the same file without other fancy definitions, you might skip package
complications:

(in-package :asdf)

(defclass cl-source-file.lis (cl-source-file)

((type :initform "lis")))

(defsystem my-cl-system

:default-component-class cl-source-file.lis

...)

It is possible to achieve the same effect in a way that supports both ASDF 1 and ASDF
2, but really, friends don’t let friends use ASDF 1. Please upgrade to ASDF 3. In short,
though: do same as above, but before you use the class in a defsystem, you also define the
following method:

(defmethod source-file-type ((f cl-source-file.lis) (s system))

(declare (ignorable f s))

"lis")

Chapter 13: FAQ 69

13.5.6 How do I mark a source file to be loaded only and not
compiled?

There is no provision in ASDF for ensuring that some components are always loaded as
source, while others are always compiled. There is load-source-op (see Section 7.1.1
[Predefined operations of ASDF], page 21), but that is an operation to be applied to a
system as a whole, not to one or another specific source files. While this idea often comes
up in discussions, it doesn’t play well with either the linking model of ECL or with various
bundle operations. In addition, the dependency model of ASDF would have to be modified
incompatibly to allow for such a trick.

13.5.7 How do I work with readtables?

It is possible to configure the lisp syntax by modifying the currently-active readtable. How-
ever, this same readtable is shared globally by all software being compiled by ASDF, espe-
cially since load and compile-file both bind *readtable*, so that its value is the same
across the build at the start of every file (unless overridden by some perform :around

method), even if a file locally binds it to a different readtable during the build.

Therefore, the following hygiene restrictions apply. If you don’t abide by these restric-
tions, there will be situations where your output files will be corrupted during an incremen-
tal build. We are not trying to prescribe new restrictions for the sake of good style: these
restrictions have always applied implicitly, and we are simply describing what they have
always been.

• It is forbidden to modifying any standard character or standard macro dispatch defined
in the CLHS.

• No two dependencies may assign different meanings to the same non-standard charac-
ter.

• Using any non-standard character while expecting the implementation to treat some
way counts as such an assignment of meaning.

• libraries need to document these assignments of meaning to non-standard characters.

• free software libraries will register these changes on: http: / /www .cliki .net /

Macro%20Characters

If you want to use readtable modifications that cannot abide by those restrictions, you
must create a different readtable object and set *readtable* to temporarily bind it to your
new readtable (which will be undone after processing the file).

For that, we recommend you use system named-readtables to define or com-
bine such readtables using named-readtables:defreadtable and use them using
named-readtables:in-readtable. Equivalently, you can use system cl-syntax, that
itself uses named-readtables, but may someday do more with, e.g. *print-pprint-dispatch*.

For even more advanced syntax modification beyond what a readtable can express, you
may consider either:

• a perform method that compiles a constant file that contains a single form
#.*code-read-with-alternate-reader* in an environment where this special
variable was bound to the code read by your alternate reader, or

• using the system reader-interception.

Beware that it is unsafe to use ASDF from the REPL to compile or load systems while the
readtable isn’t the shared readtable previously used to build software. You must manually

http://www.cliki.net/Macro%20Characters
http://www.cliki.net/Macro%20Characters

Chapter 13: FAQ 70

undo any binding of *readtable* at the REPL and restore its initial value whenever you
call operate (via e.g. load-system, test-system or require) from a REPL that is using
a different readtable.

13.5.7.1 How should my system use a readtable exported by
another system?

Use from the named-readtables system the macro named-readtables:in-readtable.

If the other system fails to use named-readtables, fix it and send a patch upstream.
In the day and age of Quicklisp and clbuild, there is little reason to eschew using such an
important library anymore.

13.5.7.2 How should my library make a readtable available to
other systems?

Use from the named-readtables system the macro named-readtables:defreadtable.

13.6 ASDF development FAQs

13.6.1 How do run the tests interactively in a REPL?

This not-so-frequently asked question is primarily for ASDF developers, but those who
encounter an unexpected error in some test may be interested, too.

Here’s the procedure for experimenting with tests in a REPL:

;; BEWARE! Some tests expect you to be in the .../asdf/test directory

;; If your REPL is not there yet, change your current directory:

;; under SLIME, you may: ,change-directory ~/common-lisp/asdf/test/

;; otherwise you may evaluate something like:

(require "asdf") (asdf:upgrade-asdf) ;load UIOP & update asdf.lisp

(uiop:chdir (asdf:system-relative-pathname :asdf "test/"))

(setf *default-pathname-defaults* (uiop:getcwd))

;; Load the test script support.

(load "script-support.lisp")

;; Initialize the script support.

;; This will also change your *package* to asdf-test.

;; NB: this function is also available from package cl-user,

;; and also available with the shorter name da in both packages.

(asdf-test::debug-asdf)

;; In case you modified ASDF since you last tested it,

;; you need to update asdf.lisp itself by evaluating ’make’ in a shell,

;; or (require "asdf") (asdf:load-system :asdf) in another CL REPL,

;; if not done in this REPL above.

;; *Then*, in this REPL, you need to evaluate:

;(asdf-test::compile-load-asdf)

;; Now, you may experiment with test code from a .script file.

Chapter 13: FAQ 71

;; See the instructions given at the end of your failing test

;; to identify which form is needed, e.g.

(frob-packages)

(asdf::with-asdf-cache () (load "test-utilities.script"))

Ongoing Work 72

Ongoing Work

For an active list of things to be done, see the TODO file in the source repository.

Also, bugs are now tracked on launchpad: https://launchpad.net/asdf.

https://launchpad.net/asdf

Bibliography 73

Bibliography

• Francois-Rene Rideau: “ASDF 3, or Why Lisp is Now an Acceptable Scripting Lan-
guage”, 2014. This article describes the innovations in ASDF 3 and 3.1, as well as
historical information on previous versions. http://github.com/fare/asdf3-2013

• Alastair Bridgewater: “Quick-build” (private communication), 2012. quick-build is a
simple and robust one file, one package build system, similar to faslpath, in 182 lines of
code (117 of which are not blank, not comments, not docstrings). Unhappily, it remains
unpublished and its IP status is unclear as of April 2014. asdf/package-system is
mostly compatible with it, modulo a different setup for toplevel hierarchies.

• Zach Beane: “Quicklisp”, 2011. The Quicklisp blog and Xach’s livejournal contain in-
formation on Quicklisp. http://blog.quicklisp.org/ http://xach.livejournal.

com/

• Francois-Rene Rideau and Robert Goldman: “Evolving ASDF: More Cooperation,
Less Coordination”, 2010. This article describes the main issues solved by ASDF 2.
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf http://www.

common-lisp.org/gitweb?p=projects/asdf/ilc2010.git

• Francois-Rene Rideau and Spencer Brody: “XCVB: an eXtensible Component Veri-
fier and Builder for Common Lisp”, 2009. This article describes XCVB, a proposed
competitor for ASDF, many ideas of which have been incorporated into ASDF 2 and
3, though many other of which still haven’t. http://common-lisp.net/projects/

xcvb/

• Peter von Etter: “faslpath”, 2009. faslpath is similar to the latter quick-build and
our letter asdf/package-system extension, except that it uses the dot . rather than
the slash / as a separator. https://code.google.com/p/faslpath/

• Drew McDermott: “A Framework for Maintaining the Coherence of a Running Lisp,”
International Lisp Conference, 2005, available in pre-print form at http://www.cs.

yale.edu/homes/dvm/papers/lisp05.pdf

• Dan Barlow: “ASDF Manual”, 2004. Older versions of this document from the days
of ASDF 1; they include ideas laid down by Dan Barlow, and comparisons with older
defsystems (mk-defsystem) and defsystem (defsystem-4, kmp’s Memo 801).

• Marco Antoniotti and Peter Van Eynde: “DEFSYSTEM: A make for Common Lisp, A
Thoughtful Re-Implementation of an Old Idea”, 2002. The defsystem-4 proposal
available in the CLOCC repository.

• Mark Kantrovitz: “Defsystem: A Portable Make Facility for Common Lisp”, 1990. The
classic mk-defsystem, later variants of which are available in the CLOCC repository
as defsystem-3.x.

• Richard Elliot Robbins: “BUILD: A Tool for Maintaining Consistency in Modular Sys-
tems”, MIT AI TR 874, 1985. ftp://publications.ai.mit.edu/ai-publications/
pdf/AITR-874.pdf

• Kent M. Pitman (kmp): “The Description of Large Systems”, MIT AI Memo 801,
1984. Available in updated-for-CL form on the web at http://nhplace.com/kent/
Papers/Large-Systems.html

http://github.com/fare/asdf3-2013
http://blog.quicklisp.org/
http://xach.livejournal.com/
http://xach.livejournal.com/
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
http://www.common-lisp.org/gitweb?p=projects/asdf/ilc2010.git
http://www.common-lisp.org/gitweb?p=projects/asdf/ilc2010.git
http://common-lisp.net/projects/xcvb/
http://common-lisp.net/projects/xcvb/
https://code.google.com/p/faslpath/
http://www.cs.yale.edu/homes/dvm/papers/lisp05.pdf
http://www.cs.yale.edu/homes/dvm/papers/lisp05.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf
http://nhplace.com/kent/Papers/Large-Systems.html
http://nhplace.com/kent/Papers/Large-Systems.html

Bibliography 74

• Dan Weinreb and David Moon: “Lisp Machine Manual”, MIT, 1981. The famous
CHINE NUAL describes one of the earliest variants of DEFSYSTEM. https: / /

bitsavers.trailing-edge.com/pdf/mit/cadr/chinual_4thEd_Jul81.pdf

https://bitsavers.trailing-edge.com/pdf/mit/cadr/chinual_4thEd_Jul81.pdf
https://bitsavers.trailing-edge.com/pdf/mit/cadr/chinual_4thEd_Jul81.pdf

Concept Index 75

Concept Index

*
features . 60

:
:also-exclude source config directive 36
:around-compile . 51
:asdf . 1
:asdf2 . 1
:asdf3 . 1
:compile-check . 51
:default-registry source config directive 36
:defsystem-depends-on . 13
:directory source config directive 36
:exclude source config directive 36
:if-component-dep-fails component option 17
:if-feature component option 17
:ignore-invalid-entries source config directive . . . 36
:include source config directive 36
:inherit-configuration source config directive 36
:require dependencies . 15
:tree source config directive . 36
:version . 10, 15, 29
:weakly-depends-on . 13

A
also-exclude source config directive 36
around-compile keyword . 51
ASDF versions . 1
ASDF-BINARY-LOCATIONS compatibility . . . 44
asdf-output-translations . 43
ASDF-related features . 1
asdf-user . 10
ASDF-USER package . 26

C
compile-check keyword . 51
component . 26
component designator . 26

D
default-registry source config directive 36

DEFSYSTEM grammar . 11
directory source config directive 36

E
exclude source config directive 36

I
ignore-invalid-entries source config directive 36
include source config directive 36
inherit-configuration source config directive 36

L
logical pathnames . 15

O
operation . 20

P
pathname specifiers . 14
Primary system name . 27

R
readtables . 69

S
serial dependencies . 16
system . 26
system designator . 26
System names . 27

T
Testing for ASDF . 1
tree source config directive . 36

V
version specifiers . 15

Function and Class Index 76

Function and Class Index

A
already-loaded-systems . 9
apply-output-translations 48
asdf-version . 60

C
clear-configuration . 8
clear-output-translations 8, 48
clear-source-registry . 40
clear-system . 54
coerce-name . 25, 28
compile-bundle-op, . 23
compile-file* . 51
compile-op . 21
compile-system . 9
component-depends-on . 25
concatenate-source-op, . 24

D
defsystem . 10, 11
disable-output-translations 48

E
enable-asdf-binary-locations-compatibility

. 44
ensure-output-translations 48
ensure-source-registry . 40

F
find-component . 25, 28
find-system . 26

I
initialize-output-translations 48
initialize-source-registry 40
input-files . 25

L
load-asd . 10
load-op . 22
load-source-op, . 22
load-system . 9
locate-system . 27

M
merge-pathnames* . 56
module . 31

O
oos . 9
oos . 21
operate . 9
operate . 21
operation-done-p . 26
OPERATION-ERROR . 50
output-files . 25

P
parse-unix-namestring . 55
perform . 25
prepare-op . 22
primary-system-name . 27

R
register-preloaded-system 54
require-system . 9
requrie-system . 9
run-program . 56
run-shell-command . 54

S
slurp-input-stream . 57
source-file . 31
source-file-type . 64
subpathname . 56
subpathname* . 56
system . 32
SYSTEM-DEFINITION-ERROR . 50
system-defsystem-depends-on 41
system-depends-on . 41
system-relative-pathname 53
system-source-directory . 54
system-weakly-depends-on 41

T
test-op . 22
test-system . 9

V
version-satisfies . 29, 33

Variable Index 77

Variable Index

*
compile-file-errors-behavior 50
compile-file-warnings-behaviour 50
default-source-registry-exclusions 39
features . 1
image-dump-hook . 8
load-system-operation . 9
nil-pathname . 55

oldest-forward-compatible-asdf-version . . 5
source-registry-parameter 41
system-definition-search-functions 26

A
asdf::*user-cache* . 46
ASDF_OUTPUT_TRANSLATIONS 43

	Introduction
	Quick start summary
	Loading ASDF
	Loading a pre-installed ASDF
	Checking whether ASDF is loaded
	Upgrading ASDF
	Upgrading your implementation's ASDF
	Issues with upgrading ASDF

	Loading ASDF from source

	Configuring ASDF
	Configuring ASDF to find your systems
	Configuring ASDF to find your systems --- old style
	Configuring where ASDF stores object files
	Resetting the ASDF configuration

	Using ASDF
	Loading a system
	Other Operations
	Moving on

	Defining systems with defsystem
	The defsystem form
	A more involved example
	The defsystem grammar
	Component names
	Component types
	System class names
	Defsystem depends on
	Weakly depends on
	Pathname specifiers
	Version specifiers
	Require
	Using logical pathnames
	Serial dependencies
	Source location (:pathname)
	if-feature option
	if-component-dep-fails option
	feature requirement

	Other code in .asd files
	The package-inferred-system extension

	The Object model of ASDF
	Operations
	Predefined operations of ASDF
	Creating new operations

	Components
	Common attributes of components
	Name
	Version identifier
	Required features
	Dependencies
	pathname
	properties

	Pre-defined subclasses of component
	Creating new component types

	Dependencies
	Functions

	Controlling where ASDF searches for systems
	Configurations
	Truenames and other dangers
	XDG base directory
	Backward Compatibility
	Configuration DSL
	Configuration Directories
	The :here directive

	Shell-friendly syntax for configuration
	Search Algorithm
	Caching Results
	Configuration API
	Introspection
	source-registry-parameter variable
	Information about system dependencies

	Status
	Rejected ideas
	TODO
	Credits for the source-registry

	Controlling where ASDF saves compiled files
	Configurations
	Backward Compatibility
	Configuration DSL
	Configuration Directories
	Shell-friendly syntax for configuration
	Semantics of Output Translations
	Caching Results
	Output location API
	Credits for output translations

	Error handling
	ASDF errors
	Compilation error and warning handling

	Miscellaneous additional functionality
	Controlling file compilation
	Controlling source file character encoding
	Miscellaneous Functions
	Some Utility Functions

	Getting the latest version
	FAQ
	``Where do I report a bug?''
	``What has changed between ASDF 1, ASDF 2 and ASDF 3?''
	What are ASDF 1, ASDF 2, and ASDF 3?
	How do I detect the ASDF version?
	ASDF can portably name files in subdirectories
	Output translations
	Source Registry Configuration
	Usual operations are made easier to the user
	Many bugs have been fixed
	ASDF itself is versioned
	ASDF can be upgraded
	Decoupled release cycle
	Pitfalls of the transition to ASDF 2

	Issues with installing the proper version of ASDF
	``My Common Lisp implementation comes with an outdated version of ASDF. What to do?''
	``I'm a Common Lisp implementation vendor. When and how should I upgrade ASDF?''

	Issues with configuring ASDF
	``How can I customize where fasl files are stored?''
	``How can I wholly disable the compiler output cache?''

	Issues with using and extending ASDF to define systems
	``How can I cater for unit-testing in my system?''
	``How can I cater for documentation generation in my system?''
	``How can I maintain non-Lisp (e.g. C) source files?''
	``I want to put my module's files at the top level. How do I do this?''
	How do I create a system definition where all the source files have a .cl extension?
	How do I mark a source file to be loaded only and not compiled?
	How do I work with readtables?
	How should my system use a readtable exported by another system?
	How should my library make a readtable available to other systems?

	ASDF development FAQs
	How do run the tests interactively in a REPL?

	Ongoing Work
	Bibliography
	Concept Index
	Function and Class Index
	Variable Index

